Journal article 1121 views 325 downloads
The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation
Microelectronics Reliability, Volume: 115, Start page: 113965
Swansea University Author: Karol Kalna
-
PDF | Accepted Manuscript
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Download (753.47KB)
DOI (Published version): 10.1016/j.microrel.2020.113965
Abstract
The thickness increase of gallium nitride (GaN) cap layer from 2 nm to 35 nm to achieve an enhancement mode GaN MIS-HEMT (Metal-Insulator-Semiconductor High-Electron-Mobility Transistor) with a threshold voltage (Vth) of +0.5 V is studied using TCAD simulations. The simulations are calibrated to mea...
Published in: | Microelectronics Reliability |
---|---|
ISSN: | 0026-2714 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55553 |
first_indexed |
2020-10-29T11:37:09Z |
---|---|
last_indexed |
2020-12-04T04:10:19Z |
id |
cronfa55553 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-12-03T13:27:29.7997957</datestamp><bib-version>v2</bib-version><id>55553</id><entry>2020-10-29</entry><title>The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-10-29</date><deptcode>ACEM</deptcode><abstract>The thickness increase of gallium nitride (GaN) cap layer from 2 nm to 35 nm to achieve an enhancement mode GaN MIS-HEMT (Metal-Insulator-Semiconductor High-Electron-Mobility Transistor) with a threshold voltage (Vth) of +0.5 V is studied using TCAD simulations. The simulations are calibrated to measured I-V characteristics of the 1 μm gate length GaN MIS-HEMT with the 2 nm thick GaN cap. A good agreement at low and high drain voltages (VDS=1 V and 5 V) between simulations and measurements is achieved by using a quantum-corrected drift-diffusion transport model. The enhancement mode GaN MIS-HEMT with a GaN cap thickness of 35 nm achieves Vth = + 0.5 V thanks to positive interface traps occurring between the SiN passivation layer and the GaN cap as reported experimentally. The simulations indicate that a parasitic channel is created at the interface between the SiN layer and the 35 nm GaN cap. Our study also shows an increase in the breakdown voltage from 100 V to 870 V when a thickness of the GaN cap layer increases from 15 nm to 35 nm.</abstract><type>Journal Article</type><journal>Microelectronics Reliability</journal><volume>115</volume><journalNumber/><paginationStart>113965</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0026-2714</issnPrint><issnElectronic/><keywords>GaN HEMT, Enhancement mode, Interface traps, Parasitic channel, Cap layer</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-12-01</publishedDate><doi>10.1016/j.microrel.2020.113965</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-12-03T13:27:29.7997957</lastEdited><Created>2020-10-29T11:35:23.9660869</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>K.</firstname><surname>Ahmeda</surname><order>1</order></author><author><firstname>B.</firstname><surname>Ubochi</surname><order>2</order></author><author><firstname>M.H.</firstname><surname>Alqaysi</surname><order>3</order></author><author><firstname>A.</firstname><surname>Al-Khalidi</surname><order>4</order></author><author><firstname>E.</firstname><surname>Wasige</surname><order>5</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>6</order></author></authors><documents><document><filename>55553__18541__3ddb41737243410fb893bbc76b2ac902.pdf</filename><originalFilename>55553.pdf</originalFilename><uploaded>2020-10-30T09:06:21.4119808</uploaded><type>Output</type><contentLength>771557</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-10-23T00:00:00.0000000</embargoDate><documentNotes>© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-12-03T13:27:29.7997957 v2 55553 2020-10-29 The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2020-10-29 ACEM The thickness increase of gallium nitride (GaN) cap layer from 2 nm to 35 nm to achieve an enhancement mode GaN MIS-HEMT (Metal-Insulator-Semiconductor High-Electron-Mobility Transistor) with a threshold voltage (Vth) of +0.5 V is studied using TCAD simulations. The simulations are calibrated to measured I-V characteristics of the 1 μm gate length GaN MIS-HEMT with the 2 nm thick GaN cap. A good agreement at low and high drain voltages (VDS=1 V and 5 V) between simulations and measurements is achieved by using a quantum-corrected drift-diffusion transport model. The enhancement mode GaN MIS-HEMT with a GaN cap thickness of 35 nm achieves Vth = + 0.5 V thanks to positive interface traps occurring between the SiN passivation layer and the GaN cap as reported experimentally. The simulations indicate that a parasitic channel is created at the interface between the SiN layer and the 35 nm GaN cap. Our study also shows an increase in the breakdown voltage from 100 V to 870 V when a thickness of the GaN cap layer increases from 15 nm to 35 nm. Journal Article Microelectronics Reliability 115 113965 Elsevier BV 0026-2714 GaN HEMT, Enhancement mode, Interface traps, Parasitic channel, Cap layer 1 12 2020 2020-12-01 10.1016/j.microrel.2020.113965 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2020-12-03T13:27:29.7997957 2020-10-29T11:35:23.9660869 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering K. Ahmeda 1 B. Ubochi 2 M.H. Alqaysi 3 A. Al-Khalidi 4 E. Wasige 5 Karol Kalna 0000-0002-6333-9189 6 55553__18541__3ddb41737243410fb893bbc76b2ac902.pdf 55553.pdf 2020-10-30T09:06:21.4119808 Output 771557 application/pdf Accepted Manuscript true 2021-10-23T00:00:00.0000000 © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation |
spellingShingle |
The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation Karol Kalna |
title_short |
The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation |
title_full |
The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation |
title_fullStr |
The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation |
title_full_unstemmed |
The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation |
title_sort |
The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation |
author_id_str_mv |
1329a42020e44fdd13de2f20d5143253 |
author_id_fullname_str_mv |
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna |
author |
Karol Kalna |
author2 |
K. Ahmeda B. Ubochi M.H. Alqaysi A. Al-Khalidi E. Wasige Karol Kalna |
format |
Journal article |
container_title |
Microelectronics Reliability |
container_volume |
115 |
container_start_page |
113965 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0026-2714 |
doi_str_mv |
10.1016/j.microrel.2020.113965 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
The thickness increase of gallium nitride (GaN) cap layer from 2 nm to 35 nm to achieve an enhancement mode GaN MIS-HEMT (Metal-Insulator-Semiconductor High-Electron-Mobility Transistor) with a threshold voltage (Vth) of +0.5 V is studied using TCAD simulations. The simulations are calibrated to measured I-V characteristics of the 1 μm gate length GaN MIS-HEMT with the 2 nm thick GaN cap. A good agreement at low and high drain voltages (VDS=1 V and 5 V) between simulations and measurements is achieved by using a quantum-corrected drift-diffusion transport model. The enhancement mode GaN MIS-HEMT with a GaN cap thickness of 35 nm achieves Vth = + 0.5 V thanks to positive interface traps occurring between the SiN passivation layer and the GaN cap as reported experimentally. The simulations indicate that a parasitic channel is created at the interface between the SiN layer and the 35 nm GaN cap. Our study also shows an increase in the breakdown voltage from 100 V to 870 V when a thickness of the GaN cap layer increases from 15 nm to 35 nm. |
published_date |
2020-12-01T14:01:27Z |
_version_ |
1821323755642683392 |
score |
11.048042 |