Journal article 1125 views
Impact of interface traps/defects and self-heating on the degradation of performance of a 4H-SiC VDMOSFET
IET Power Electronics, Volume: 12, Issue: 11, Pages: 2731 - 2740
Swansea University Authors: Karol Kalna , Antonio Martinez Muniz
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1049/iet-pel.2018.5897
Abstract
The reliability of silicon carbide metal oxide semiconductor field-effect transistors remains a challenge in power applications and relates to the SiO 2 –SiC interface. The presence of unwanted interface traps/defects degrades the device performance. The impact of acceptor traps/defects on the perfo...
Published in: | IET Power Electronics |
---|---|
ISSN: | 1755-4535 1755-4543 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa52363 |
Abstract: |
The reliability of silicon carbide metal oxide semiconductor field-effect transistors remains a challenge in power applications and relates to the SiO 2 –SiC interface. The presence of unwanted interface traps/defects degrades the device performance. The impact of acceptor traps/defects on the performance of a 4H-SiC vertical Diffused Metal Oxide Semiconductor Field Effect Transistor (DMOSFET) with a breakdown voltage of 1700 V is investigated. - and - characteristics were simulated, using a drift-diffusion model coupled to Fourier heat equations, and are in a good agreement with experimental results. The presence of interface traps/defects were shown to produce degradation of threshold voltage, but the impact diminishes as temperature increases. A threshold voltage shift of 3.5 V occurs for a trap concentration of 2 × 10 13 cm– 2 /eV at room temperature. The transfer characteristics obtained from electro-thermal modelling show a larger degradation than those at a constant temperature. This degradation increases with the drain bias increase. The threshold voltage from the electro-thermal simulations is 5 V compared to 4 V observed in constant 423 K temperature simulations at. Finally, the interface traps/defects increases breakdown voltage exhibiting a strong dependency on the trap density and their energy decay characteristics. |
---|---|
College: |
Faculty of Science and Engineering |
Issue: |
11 |
Start Page: |
2731 |
End Page: |
2740 |