No Cover Image

Journal article 688 views 138 downloads

Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects

Ben Thorpe, SOPHIE SCHIRMER, Karol Kalna Orcid Logo

Semiconductor Science and Technology, Volume: 37, Issue: 7, Start page: 075009

Swansea University Authors: Ben Thorpe, SOPHIE SCHIRMER, Karol Kalna Orcid Logo

  • 60258.pdf

    PDF | Version of Record

    © 2022 The Author(s). Released under the terms of the Creative Commons Attribution 4.0 licence

    Download (24.35MB)

Abstract

Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin–orbit coupling mechanisms (Dresselhaus a...

Full description

Published in: Semiconductor Science and Technology
ISSN: 0268-1242 1361-6641
Published: IOP Publishing 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa60258
first_indexed 2022-06-16T16:22:05Z
last_indexed 2022-06-29T03:20:21Z
id cronfa60258
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-06-28T15:31:55.7411051</datestamp><bib-version>v2</bib-version><id>60258</id><entry>2022-06-16</entry><title>Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects</title><swanseaauthors><author><sid>24bbe043d53f2aa654000c42cd8b2b04</sid><firstname>Ben</firstname><surname>Thorpe</surname><name>Ben Thorpe</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>8b388a612d4845e7e66a779e3ca425fd</sid><firstname>SOPHIE</firstname><surname>SCHIRMER</surname><name>SOPHIE SCHIRMER</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-06-16</date><deptcode>MACS</deptcode><abstract>Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin&#x2013;orbit coupling mechanisms (Dresselhaus and Rashba coupling) examine the electron spin transport in the 25 nm gate length $\mathrm{In_{0.7}Ga_{0.3}As}$ MOSFET. The transistor lateral dimensions (the gate length, the source-to-gate, and the gate-to-drain spacers) are increased to investigate the spin-dependent drain current modulation induced by the gate from room temperature of 300 K down to 77 K. This modulation increases with increasing temperature due to increased Rashba coupling. Finally, an increase of up to 20 nm in the gate length, source-to-gate, or the gate-to-drain spacers increases the spin polarization and enhances the spin-dependent drain current modulation at the drain due to polarization-refocusing effects.</abstract><type>Journal Article</type><journal>Semiconductor Science and Technology</journal><volume>37</volume><journalNumber>7</journalNumber><paginationStart>075009</paginationStart><paginationEnd/><publisher>IOP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0268-1242</issnPrint><issnElectronic>1361-6641</issnElectronic><keywords>InGaAs FET, spin transport, Dresselhaus and Rashba coupling, Monte Carlo simulation</keywords><publishedDay>31</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-05-31</publishedDate><doi>10.1088/1361-6641/ac70f0</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>B T appreciated the support for his studentship, and S S and K K for the research from the S&#x2C6;er Cymru National Research Network in Advanced Engineering by Welsh Government.</funders><lastEdited>2022-06-28T15:31:55.7411051</lastEdited><Created>2022-06-16T17:17:47.3033388</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ben</firstname><surname>Thorpe</surname><order>1</order></author><author><firstname>SOPHIE</firstname><surname>SCHIRMER</surname><order>2</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>3</order></author></authors><documents><document><filename>60258__24407__0ec0ef4888e04a4a9037dcc16eafc9dc.pdf</filename><originalFilename>60258.pdf</originalFilename><uploaded>2022-06-28T15:29:03.0545296</uploaded><type>Output</type><contentLength>25537514</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2022 The Author(s). Released under the terms of the Creative Commons Attribution 4.0 licence</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-06-28T15:31:55.7411051 v2 60258 2022-06-16 Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects 24bbe043d53f2aa654000c42cd8b2b04 Ben Thorpe Ben Thorpe true false 8b388a612d4845e7e66a779e3ca425fd SOPHIE SCHIRMER SOPHIE SCHIRMER true false 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2022-06-16 MACS Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin–orbit coupling mechanisms (Dresselhaus and Rashba coupling) examine the electron spin transport in the 25 nm gate length $\mathrm{In_{0.7}Ga_{0.3}As}$ MOSFET. The transistor lateral dimensions (the gate length, the source-to-gate, and the gate-to-drain spacers) are increased to investigate the spin-dependent drain current modulation induced by the gate from room temperature of 300 K down to 77 K. This modulation increases with increasing temperature due to increased Rashba coupling. Finally, an increase of up to 20 nm in the gate length, source-to-gate, or the gate-to-drain spacers increases the spin polarization and enhances the spin-dependent drain current modulation at the drain due to polarization-refocusing effects. Journal Article Semiconductor Science and Technology 37 7 075009 IOP Publishing 0268-1242 1361-6641 InGaAs FET, spin transport, Dresselhaus and Rashba coupling, Monte Carlo simulation 31 5 2022 2022-05-31 10.1088/1361-6641/ac70f0 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Not Required B T appreciated the support for his studentship, and S S and K K for the research from the Sˆer Cymru National Research Network in Advanced Engineering by Welsh Government. 2022-06-28T15:31:55.7411051 2022-06-16T17:17:47.3033388 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ben Thorpe 1 SOPHIE SCHIRMER 2 Karol Kalna 0000-0002-6333-9189 3 60258__24407__0ec0ef4888e04a4a9037dcc16eafc9dc.pdf 60258.pdf 2022-06-28T15:29:03.0545296 Output 25537514 application/pdf Version of Record true © 2022 The Author(s). Released under the terms of the Creative Commons Attribution 4.0 licence true eng https://creativecommons.org/licenses/by/4.0/
title Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects
spellingShingle Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects
Ben Thorpe
SOPHIE SCHIRMER
Karol Kalna
title_short Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects
title_full Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects
title_fullStr Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects
title_full_unstemmed Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects
title_sort Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects
author_id_str_mv 24bbe043d53f2aa654000c42cd8b2b04
8b388a612d4845e7e66a779e3ca425fd
1329a42020e44fdd13de2f20d5143253
author_id_fullname_str_mv 24bbe043d53f2aa654000c42cd8b2b04_***_Ben Thorpe
8b388a612d4845e7e66a779e3ca425fd_***_SOPHIE SCHIRMER
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna
author Ben Thorpe
SOPHIE SCHIRMER
Karol Kalna
author2 Ben Thorpe
SOPHIE SCHIRMER
Karol Kalna
format Journal article
container_title Semiconductor Science and Technology
container_volume 37
container_issue 7
container_start_page 075009
publishDate 2022
institution Swansea University
issn 0268-1242
1361-6641
doi_str_mv 10.1088/1361-6641/ac70f0
publisher IOP Publishing
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin–orbit coupling mechanisms (Dresselhaus and Rashba coupling) examine the electron spin transport in the 25 nm gate length $\mathrm{In_{0.7}Ga_{0.3}As}$ MOSFET. The transistor lateral dimensions (the gate length, the source-to-gate, and the gate-to-drain spacers) are increased to investigate the spin-dependent drain current modulation induced by the gate from room temperature of 300 K down to 77 K. This modulation increases with increasing temperature due to increased Rashba coupling. Finally, an increase of up to 20 nm in the gate length, source-to-gate, or the gate-to-drain spacers increases the spin polarization and enhances the spin-dependent drain current modulation at the drain due to polarization-refocusing effects.
published_date 2022-05-31T08:12:01Z
_version_ 1821392368037789696
score 11.123827