Journal article 688 views 138 downloads
Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects
Semiconductor Science and Technology, Volume: 37, Issue: 7, Start page: 075009
Swansea University Authors: Ben Thorpe, SOPHIE SCHIRMER, Karol Kalna
-
PDF | Version of Record
© 2022 The Author(s). Released under the terms of the Creative Commons Attribution 4.0 licence
Download (24.35MB)
DOI (Published version): 10.1088/1361-6641/ac70f0
Abstract
Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin–orbit coupling mechanisms (Dresselhaus a...
Published in: | Semiconductor Science and Technology |
---|---|
ISSN: | 0268-1242 1361-6641 |
Published: |
IOP Publishing
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa60258 |
first_indexed |
2022-06-16T16:22:05Z |
---|---|
last_indexed |
2022-06-29T03:20:21Z |
id |
cronfa60258 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-06-28T15:31:55.7411051</datestamp><bib-version>v2</bib-version><id>60258</id><entry>2022-06-16</entry><title>Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects</title><swanseaauthors><author><sid>24bbe043d53f2aa654000c42cd8b2b04</sid><firstname>Ben</firstname><surname>Thorpe</surname><name>Ben Thorpe</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>8b388a612d4845e7e66a779e3ca425fd</sid><firstname>SOPHIE</firstname><surname>SCHIRMER</surname><name>SOPHIE SCHIRMER</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-06-16</date><deptcode>MACS</deptcode><abstract>Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin–orbit coupling mechanisms (Dresselhaus and Rashba coupling) examine the electron spin transport in the 25 nm gate length $\mathrm{In_{0.7}Ga_{0.3}As}$ MOSFET. The transistor lateral dimensions (the gate length, the source-to-gate, and the gate-to-drain spacers) are increased to investigate the spin-dependent drain current modulation induced by the gate from room temperature of 300 K down to 77 K. This modulation increases with increasing temperature due to increased Rashba coupling. Finally, an increase of up to 20 nm in the gate length, source-to-gate, or the gate-to-drain spacers increases the spin polarization and enhances the spin-dependent drain current modulation at the drain due to polarization-refocusing effects.</abstract><type>Journal Article</type><journal>Semiconductor Science and Technology</journal><volume>37</volume><journalNumber>7</journalNumber><paginationStart>075009</paginationStart><paginationEnd/><publisher>IOP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0268-1242</issnPrint><issnElectronic>1361-6641</issnElectronic><keywords>InGaAs FET, spin transport, Dresselhaus and Rashba coupling, Monte Carlo simulation</keywords><publishedDay>31</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-05-31</publishedDate><doi>10.1088/1361-6641/ac70f0</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>B T appreciated the support for his studentship, and S S and K K for the research from the Sˆer Cymru National Research Network in Advanced Engineering by Welsh Government.</funders><lastEdited>2022-06-28T15:31:55.7411051</lastEdited><Created>2022-06-16T17:17:47.3033388</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ben</firstname><surname>Thorpe</surname><order>1</order></author><author><firstname>SOPHIE</firstname><surname>SCHIRMER</surname><order>2</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>3</order></author></authors><documents><document><filename>60258__24407__0ec0ef4888e04a4a9037dcc16eafc9dc.pdf</filename><originalFilename>60258.pdf</originalFilename><uploaded>2022-06-28T15:29:03.0545296</uploaded><type>Output</type><contentLength>25537514</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 The Author(s). Released under the terms of the Creative Commons Attribution 4.0 licence</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-06-28T15:31:55.7411051 v2 60258 2022-06-16 Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects 24bbe043d53f2aa654000c42cd8b2b04 Ben Thorpe Ben Thorpe true false 8b388a612d4845e7e66a779e3ca425fd SOPHIE SCHIRMER SOPHIE SCHIRMER true false 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2022-06-16 MACS Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin–orbit coupling mechanisms (Dresselhaus and Rashba coupling) examine the electron spin transport in the 25 nm gate length $\mathrm{In_{0.7}Ga_{0.3}As}$ MOSFET. The transistor lateral dimensions (the gate length, the source-to-gate, and the gate-to-drain spacers) are increased to investigate the spin-dependent drain current modulation induced by the gate from room temperature of 300 K down to 77 K. This modulation increases with increasing temperature due to increased Rashba coupling. Finally, an increase of up to 20 nm in the gate length, source-to-gate, or the gate-to-drain spacers increases the spin polarization and enhances the spin-dependent drain current modulation at the drain due to polarization-refocusing effects. Journal Article Semiconductor Science and Technology 37 7 075009 IOP Publishing 0268-1242 1361-6641 InGaAs FET, spin transport, Dresselhaus and Rashba coupling, Monte Carlo simulation 31 5 2022 2022-05-31 10.1088/1361-6641/ac70f0 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Not Required B T appreciated the support for his studentship, and S S and K K for the research from the Sˆer Cymru National Research Network in Advanced Engineering by Welsh Government. 2022-06-28T15:31:55.7411051 2022-06-16T17:17:47.3033388 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ben Thorpe 1 SOPHIE SCHIRMER 2 Karol Kalna 0000-0002-6333-9189 3 60258__24407__0ec0ef4888e04a4a9037dcc16eafc9dc.pdf 60258.pdf 2022-06-28T15:29:03.0545296 Output 25537514 application/pdf Version of Record true © 2022 The Author(s). Released under the terms of the Creative Commons Attribution 4.0 licence true eng https://creativecommons.org/licenses/by/4.0/ |
title |
Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects |
spellingShingle |
Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects Ben Thorpe SOPHIE SCHIRMER Karol Kalna |
title_short |
Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects |
title_full |
Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects |
title_fullStr |
Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects |
title_full_unstemmed |
Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects |
title_sort |
Monte Carlo simulations of spin transport in nanoscale$\mathrm{In_{0.7}Ga_{0.3}As}$ transistors: temperature and size effects |
author_id_str_mv |
24bbe043d53f2aa654000c42cd8b2b04 8b388a612d4845e7e66a779e3ca425fd 1329a42020e44fdd13de2f20d5143253 |
author_id_fullname_str_mv |
24bbe043d53f2aa654000c42cd8b2b04_***_Ben Thorpe 8b388a612d4845e7e66a779e3ca425fd_***_SOPHIE SCHIRMER 1329a42020e44fdd13de2f20d5143253_***_Karol Kalna |
author |
Ben Thorpe SOPHIE SCHIRMER Karol Kalna |
author2 |
Ben Thorpe SOPHIE SCHIRMER Karol Kalna |
format |
Journal article |
container_title |
Semiconductor Science and Technology |
container_volume |
37 |
container_issue |
7 |
container_start_page |
075009 |
publishDate |
2022 |
institution |
Swansea University |
issn |
0268-1242 1361-6641 |
doi_str_mv |
10.1088/1361-6641/ac70f0 |
publisher |
IOP Publishing |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
Spin-based metal-oxide-semiconductor field-effect transistors (MOSFETs) with a high-mobility III-V channel are studied using self-consistent quantum corrected ensemble Monte Carlo device simulations of charge and spin transport. The simulations including spin–orbit coupling mechanisms (Dresselhaus and Rashba coupling) examine the electron spin transport in the 25 nm gate length $\mathrm{In_{0.7}Ga_{0.3}As}$ MOSFET. The transistor lateral dimensions (the gate length, the source-to-gate, and the gate-to-drain spacers) are increased to investigate the spin-dependent drain current modulation induced by the gate from room temperature of 300 K down to 77 K. This modulation increases with increasing temperature due to increased Rashba coupling. Finally, an increase of up to 20 nm in the gate length, source-to-gate, or the gate-to-drain spacers increases the spin polarization and enhances the spin-dependent drain current modulation at the drain due to polarization-refocusing effects. |
published_date |
2022-05-31T08:12:01Z |
_version_ |
1821392368037789696 |
score |
11.123827 |