Journal article 1188 views 311 downloads
Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET
IEEE Electron Device Letters, Volume: 40, Issue: 4, Pages: 510 - 513
Swansea University Author: Karol Kalna
-
PDF | Accepted Manuscript
Download (9.91MB)
DOI (Published version): 10.1109/LED.2019.2900494
Abstract
The effect of gate edge roughness (GER) in the sub-threshold region is studied for two state-of-the-art architectures: a 10.7-nm Si FinFET and a 10-nm Si gateall-around (GAA) nanowire (NW) FET using an in-house 3D quantum-corrected drift-diffusion simulation tool. The GER is applied to the device ga...
Published in: | IEEE Electron Device Letters |
---|---|
ISSN: | 0741-3106 1558-0563 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa50182 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-05-09T20:01:06Z |
---|---|
last_indexed |
2019-06-05T11:06:39Z |
id |
cronfa50182 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-05-27T15:05:34.6413574</datestamp><bib-version>v2</bib-version><id>50182</id><entry>2019-05-01</entry><title>Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-05-01</date><deptcode>EEEG</deptcode><abstract>The effect of gate edge roughness (GER) in the sub-threshold region is studied for two state-of-the-art architectures: a 10.7-nm Si FinFET and a 10-nm Si gateall-around (GAA) nanowire (NW) FET using an in-house 3D quantum-corrected drift-diffusion simulation tool. The GER is applied to the device gate using the characteristic values of root-mean-square amplitude and correlation length (CL). The GER-induced variability results in a standard deviation (σ) for the threshold voltage (V T ) of 7 mV for the FinFET when CL/Gate Perimeter = 0.66 and RMS = 0.80 nm, which is 20% greater than that of the GAA NW FET. GER is a less damaging source of variability than metal grain granularity (MGG), line edge roughness (LER), and random dopants (RD) for both devices. When compared to LER variations, σV T due to the GER is 62% and 86% lower for the FinFET and GAA NW FET, respectively. However, although GER affects the FinFET more than the GAA NW FET, the combined variability effect of GER, MGG, LER, and RD (σV T,comb ) on the FinFET is 30 mV, a value approximately 50% smaller than that of the GAA NW FET.</abstract><type>Journal Article</type><journal>IEEE Electron Device Letters</journal><volume>40</volume><journalNumber>4</journalNumber><paginationStart>510</paginationStart><paginationEnd>513</paginationEnd><publisher/><issnPrint>0741-3106</issnPrint><issnElectronic>1558-0563</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.1109/LED.2019.2900494</doi><url/><notes/><college>COLLEGE NANME</college><department>Electronic and Electrical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-05-27T15:05:34.6413574</lastEdited><Created>2019-05-01T10:21:50.1385920</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>G.</firstname><surname>Espineira</surname><order>1</order></author><author><firstname>D.</firstname><surname>Nagy</surname><order>2</order></author><author><firstname>G.</firstname><surname>Indalecio</surname><order>3</order></author><author><firstname>A. J.</firstname><surname>Garcia-Loureiro</surname><order>4</order></author><author><firstname>K.</firstname><surname>Kalna</surname><order>5</order></author><author><firstname>N.</firstname><surname>Seoane</surname><order>6</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>7</order></author></authors><documents><document><filename>0050182-07052019085337.pdf</filename><originalFilename>espineira2019.pdf</originalFilename><uploaded>2019-05-07T08:53:37.1130000</uploaded><type>Output</type><contentLength>10354958</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-05-07T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-05-27T15:05:34.6413574 v2 50182 2019-05-01 Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2019-05-01 EEEG The effect of gate edge roughness (GER) in the sub-threshold region is studied for two state-of-the-art architectures: a 10.7-nm Si FinFET and a 10-nm Si gateall-around (GAA) nanowire (NW) FET using an in-house 3D quantum-corrected drift-diffusion simulation tool. The GER is applied to the device gate using the characteristic values of root-mean-square amplitude and correlation length (CL). The GER-induced variability results in a standard deviation (σ) for the threshold voltage (V T ) of 7 mV for the FinFET when CL/Gate Perimeter = 0.66 and RMS = 0.80 nm, which is 20% greater than that of the GAA NW FET. GER is a less damaging source of variability than metal grain granularity (MGG), line edge roughness (LER), and random dopants (RD) for both devices. When compared to LER variations, σV T due to the GER is 62% and 86% lower for the FinFET and GAA NW FET, respectively. However, although GER affects the FinFET more than the GAA NW FET, the combined variability effect of GER, MGG, LER, and RD (σV T,comb ) on the FinFET is 30 mV, a value approximately 50% smaller than that of the GAA NW FET. Journal Article IEEE Electron Device Letters 40 4 510 513 0741-3106 1558-0563 31 12 2019 2019-12-31 10.1109/LED.2019.2900494 COLLEGE NANME Electronic and Electrical Engineering COLLEGE CODE EEEG Swansea University 2019-05-27T15:05:34.6413574 2019-05-01T10:21:50.1385920 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering G. Espineira 1 D. Nagy 2 G. Indalecio 3 A. J. Garcia-Loureiro 4 K. Kalna 5 N. Seoane 6 Karol Kalna 0000-0002-6333-9189 7 0050182-07052019085337.pdf espineira2019.pdf 2019-05-07T08:53:37.1130000 Output 10354958 application/pdf Accepted Manuscript true 2019-05-07T00:00:00.0000000 true eng |
title |
Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET |
spellingShingle |
Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET Karol Kalna |
title_short |
Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET |
title_full |
Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET |
title_fullStr |
Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET |
title_full_unstemmed |
Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET |
title_sort |
Impact of Gate Edge Roughness Variability on FinFET and Gate-All-Around Nanowire FET |
author_id_str_mv |
1329a42020e44fdd13de2f20d5143253 |
author_id_fullname_str_mv |
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna |
author |
Karol Kalna |
author2 |
G. Espineira D. Nagy G. Indalecio A. J. Garcia-Loureiro K. Kalna N. Seoane Karol Kalna |
format |
Journal article |
container_title |
IEEE Electron Device Letters |
container_volume |
40 |
container_issue |
4 |
container_start_page |
510 |
publishDate |
2019 |
institution |
Swansea University |
issn |
0741-3106 1558-0563 |
doi_str_mv |
10.1109/LED.2019.2900494 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
The effect of gate edge roughness (GER) in the sub-threshold region is studied for two state-of-the-art architectures: a 10.7-nm Si FinFET and a 10-nm Si gateall-around (GAA) nanowire (NW) FET using an in-house 3D quantum-corrected drift-diffusion simulation tool. The GER is applied to the device gate using the characteristic values of root-mean-square amplitude and correlation length (CL). The GER-induced variability results in a standard deviation (σ) for the threshold voltage (V T ) of 7 mV for the FinFET when CL/Gate Perimeter = 0.66 and RMS = 0.80 nm, which is 20% greater than that of the GAA NW FET. GER is a less damaging source of variability than metal grain granularity (MGG), line edge roughness (LER), and random dopants (RD) for both devices. When compared to LER variations, σV T due to the GER is 62% and 86% lower for the FinFET and GAA NW FET, respectively. However, although GER affects the FinFET more than the GAA NW FET, the combined variability effect of GER, MGG, LER, and RD (σV T,comb ) on the FinFET is 30 mV, a value approximately 50% smaller than that of the GAA NW FET. |
published_date |
2019-12-31T04:01:32Z |
_version_ |
1763753162990157824 |
score |
11.037275 |