Journal article 925 views 138 downloads
Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating
Stephen A. O. Russell,
Amador Perez-Tomas,
Christopher F. McConville,
Craig A. Fisher,
Dean P. Hamilton,
Philip A. Mawby,
Michael R. Jennings,
Mike Jennings
IEEE Journal of the Electron Devices Society, Volume: 5, Issue: 4, Pages: 256 - 261
Swansea University Author: Mike Jennings
-
PDF | Version of Record
Download (2.95MB)
DOI (Published version): 10.1109/JEDS.2017.2706321
Abstract
A method to improve thermal management of β-Ga 2 O 3 FETs is demonstrated here via simulation of epitaxial growth on a 4H-SiC substrate. Using a recently published device as a model, the reduction achieved in self-heating allows the device to be driven at higher gate voltages and increases the overa...
Published in: | IEEE Journal of the Electron Devices Society |
---|---|
ISSN: | 2168-6734 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa49903 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-04-08T10:16:43Z |
---|---|
last_indexed |
2019-07-29T22:27:45Z |
id |
cronfa49903 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-07-29T15:02:44.7316522</datestamp><bib-version>v2</bib-version><id>49903</id><entry>2019-04-05</entry><title>Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating</title><swanseaauthors><author><sid>e0ba5d7ece08cd70c9f8f8683996454a</sid><ORCID>0000-0003-3270-0805</ORCID><firstname>Mike</firstname><surname>Jennings</surname><name>Mike Jennings</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-04-05</date><deptcode>EEEG</deptcode><abstract>A method to improve thermal management of β-Ga 2 O 3 FETs is demonstrated here via simulation of epitaxial growth on a 4H-SiC substrate. Using a recently published device as a model, the reduction achieved in self-heating allows the device to be driven at higher gate voltages and increases the overall performance. For the same operating parameters an 18% increase in peak drain current and 15% reduction in lattice temperature are observed. Device dimensions may be substantially reduced without detriment to performance and normally off operation may be achieved.</abstract><type>Journal Article</type><journal>IEEE Journal of the Electron Devices Society</journal><volume>5</volume><journalNumber>4</journalNumber><paginationStart>256</paginationStart><paginationEnd>261</paginationEnd><publisher/><issnElectronic>2168-6734</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1109/JEDS.2017.2706321</doi><url/><notes/><college>COLLEGE NANME</college><department>Electronic and Electrical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-07-29T15:02:44.7316522</lastEdited><Created>2019-04-05T09:37:22.2171599</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Stephen A. O.</firstname><surname>Russell</surname><order>1</order></author><author><firstname>Amador</firstname><surname>Perez-Tomas</surname><order>2</order></author><author><firstname>Christopher F.</firstname><surname>McConville</surname><order>3</order></author><author><firstname>Craig A.</firstname><surname>Fisher</surname><order>4</order></author><author><firstname>Dean P.</firstname><surname>Hamilton</surname><order>5</order></author><author><firstname>Philip A.</firstname><surname>Mawby</surname><order>6</order></author><author><firstname>Michael R.</firstname><surname>Jennings</surname><order>7</order></author><author><firstname>Mike</firstname><surname>Jennings</surname><orcid>0000-0003-3270-0805</orcid><order>8</order></author></authors><documents><document><filename>0049903-05042019093937.pdf</filename><originalFilename>russell2017v2.pdf</originalFilename><uploaded>2019-04-05T09:39:37.0830000</uploaded><type>Output</type><contentLength>3162441</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-04-05T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-07-29T15:02:44.7316522 v2 49903 2019-04-05 Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating e0ba5d7ece08cd70c9f8f8683996454a 0000-0003-3270-0805 Mike Jennings Mike Jennings true false 2019-04-05 EEEG A method to improve thermal management of β-Ga 2 O 3 FETs is demonstrated here via simulation of epitaxial growth on a 4H-SiC substrate. Using a recently published device as a model, the reduction achieved in self-heating allows the device to be driven at higher gate voltages and increases the overall performance. For the same operating parameters an 18% increase in peak drain current and 15% reduction in lattice temperature are observed. Device dimensions may be substantially reduced without detriment to performance and normally off operation may be achieved. Journal Article IEEE Journal of the Electron Devices Society 5 4 256 261 2168-6734 31 12 2017 2017-12-31 10.1109/JEDS.2017.2706321 COLLEGE NANME Electronic and Electrical Engineering COLLEGE CODE EEEG Swansea University 2019-07-29T15:02:44.7316522 2019-04-05T09:37:22.2171599 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Stephen A. O. Russell 1 Amador Perez-Tomas 2 Christopher F. McConville 3 Craig A. Fisher 4 Dean P. Hamilton 5 Philip A. Mawby 6 Michael R. Jennings 7 Mike Jennings 0000-0003-3270-0805 8 0049903-05042019093937.pdf russell2017v2.pdf 2019-04-05T09:39:37.0830000 Output 3162441 application/pdf Version of Record true 2019-04-05T00:00:00.0000000 true eng |
title |
Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating |
spellingShingle |
Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating Mike Jennings |
title_short |
Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating |
title_full |
Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating |
title_fullStr |
Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating |
title_full_unstemmed |
Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating |
title_sort |
Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET With Reduced Self Heating |
author_id_str_mv |
e0ba5d7ece08cd70c9f8f8683996454a |
author_id_fullname_str_mv |
e0ba5d7ece08cd70c9f8f8683996454a_***_Mike Jennings |
author |
Mike Jennings |
author2 |
Stephen A. O. Russell Amador Perez-Tomas Christopher F. McConville Craig A. Fisher Dean P. Hamilton Philip A. Mawby Michael R. Jennings Mike Jennings |
format |
Journal article |
container_title |
IEEE Journal of the Electron Devices Society |
container_volume |
5 |
container_issue |
4 |
container_start_page |
256 |
publishDate |
2017 |
institution |
Swansea University |
issn |
2168-6734 |
doi_str_mv |
10.1109/JEDS.2017.2706321 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
A method to improve thermal management of β-Ga 2 O 3 FETs is demonstrated here via simulation of epitaxial growth on a 4H-SiC substrate. Using a recently published device as a model, the reduction achieved in self-heating allows the device to be driven at higher gate voltages and increases the overall performance. For the same operating parameters an 18% increase in peak drain current and 15% reduction in lattice temperature are observed. Device dimensions may be substantially reduced without detriment to performance and normally off operation may be achieved. |
published_date |
2017-12-31T04:01:10Z |
_version_ |
1763753140172095488 |
score |
11.037297 |