Journal article 1514 views 252 downloads
Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate
S. J. Duffy,
B. Benbakhti,
M. Mattalah,
W. Zhang,
M. Bouchilaoun,
M. Boucherta,
K. Kalna,
N. Bourzgui,
H. Maher,
A. Soltani,
Karol Kalna
ECS Journal of Solid State Science and Technology, Volume: 6, Issue: 11, Pages: S3040 - S3043
Swansea University Author: Karol Kalna
-
PDF | Version of Record
Download (1.6MB)
DOI (Published version): 10.1149/2.0111711jss
Abstract
An optimized fabrication process of ohmic contacts is proposed to reduce the source/drain access resistance (RC) and enhance DC/RF performance of AlGaN/GaN HEMTs with a high Al concentration. We show that source/drain RC can be considerably lowered by (i) optimally etching into the barrier layer usi...
Published in: | ECS Journal of Solid State Science and Technology |
---|---|
ISSN: | 2162-8769 2162-8777 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa35704 |
first_indexed |
2017-09-28T18:58:51Z |
---|---|
last_indexed |
2018-02-09T05:27:10Z |
id |
cronfa35704 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2017-11-14T15:53:57.3269712</datestamp><bib-version>v2</bib-version><id>35704</id><entry>2017-09-28</entry><title>Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate</title><swanseaauthors><author><sid>1329a42020e44fdd13de2f20d5143253</sid><ORCID>0000-0002-6333-9189</ORCID><firstname>Karol</firstname><surname>Kalna</surname><name>Karol Kalna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-09-28</date><deptcode>ACEM</deptcode><abstract>An optimized fabrication process of ohmic contacts is proposed to reduce the source/drain access resistance (RC) and enhance DC/RF performance of AlGaN/GaN HEMTs with a high Al concentration. We show that source/drain RC can be considerably lowered by (i) optimally etching into the barrier layer using Ar+ ion beam, and by (ii) forming recessed contact metallization using an optimized Ti/Al/Ni/Au (12 nm/200 nm/40 nm/100 nm) multilayers. We found that a low RC of ∼0.3 Ω.mm can be achieved by etching closer to the 2-Dimensional Electron Gas (2DEG) at an optimum etching depth, 75% of the barrier thickness, followed by a rapid thermal annealing at 850°C. This is due to the very small distance between the alloy and the 2DEG (higher electric field) as shown by 2D drift-diffusion simulations combined with Transmission Line Model (TLM) extractions.</abstract><type>Journal Article</type><journal>ECS Journal of Solid State Science and Technology</journal><volume>6</volume><journalNumber>11</journalNumber><paginationStart>S3040</paginationStart><paginationEnd>S3043</paginationEnd><publisher/><issnPrint>2162-8769</issnPrint><issnElectronic>2162-8777</issnElectronic><keywords>AlGaN/GaN HEMTs, Ohmic Contact, TLM Model</keywords><publishedDay>7</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-09-07</publishedDate><doi>10.1149/2.0111711jss</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-11-14T15:53:57.3269712</lastEdited><Created>2017-09-28T15:38:37.7803889</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>S. J.</firstname><surname>Duffy</surname><order>1</order></author><author><firstname>B.</firstname><surname>Benbakhti</surname><order>2</order></author><author><firstname>M.</firstname><surname>Mattalah</surname><order>3</order></author><author><firstname>W.</firstname><surname>Zhang</surname><order>4</order></author><author><firstname>M.</firstname><surname>Bouchilaoun</surname><order>5</order></author><author><firstname>M.</firstname><surname>Boucherta</surname><order>6</order></author><author><firstname>K.</firstname><surname>Kalna</surname><order>7</order></author><author><firstname>N.</firstname><surname>Bourzgui</surname><order>8</order></author><author><firstname>H.</firstname><surname>Maher</surname><order>9</order></author><author><firstname>A.</firstname><surname>Soltani</surname><order>10</order></author><author><firstname>Karol</firstname><surname>Kalna</surname><orcid>0000-0002-6333-9189</orcid><order>11</order></author></authors><documents><document><filename>0035704-03102017150650.pdf</filename><originalFilename>duffy2017.pdf</originalFilename><uploaded>2017-10-03T15:06:50.0970000</uploaded><type>Output</type><contentLength>1666635</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-10-03T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2017-11-14T15:53:57.3269712 v2 35704 2017-09-28 Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate 1329a42020e44fdd13de2f20d5143253 0000-0002-6333-9189 Karol Kalna Karol Kalna true false 2017-09-28 ACEM An optimized fabrication process of ohmic contacts is proposed to reduce the source/drain access resistance (RC) and enhance DC/RF performance of AlGaN/GaN HEMTs with a high Al concentration. We show that source/drain RC can be considerably lowered by (i) optimally etching into the barrier layer using Ar+ ion beam, and by (ii) forming recessed contact metallization using an optimized Ti/Al/Ni/Au (12 nm/200 nm/40 nm/100 nm) multilayers. We found that a low RC of ∼0.3 Ω.mm can be achieved by etching closer to the 2-Dimensional Electron Gas (2DEG) at an optimum etching depth, 75% of the barrier thickness, followed by a rapid thermal annealing at 850°C. This is due to the very small distance between the alloy and the 2DEG (higher electric field) as shown by 2D drift-diffusion simulations combined with Transmission Line Model (TLM) extractions. Journal Article ECS Journal of Solid State Science and Technology 6 11 S3040 S3043 2162-8769 2162-8777 AlGaN/GaN HEMTs, Ohmic Contact, TLM Model 7 9 2017 2017-09-07 10.1149/2.0111711jss COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2017-11-14T15:53:57.3269712 2017-09-28T15:38:37.7803889 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering S. J. Duffy 1 B. Benbakhti 2 M. Mattalah 3 W. Zhang 4 M. Bouchilaoun 5 M. Boucherta 6 K. Kalna 7 N. Bourzgui 8 H. Maher 9 A. Soltani 10 Karol Kalna 0000-0002-6333-9189 11 0035704-03102017150650.pdf duffy2017.pdf 2017-10-03T15:06:50.0970000 Output 1666635 application/pdf Version of Record true 2017-10-03T00:00:00.0000000 true eng |
title |
Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate |
spellingShingle |
Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate Karol Kalna |
title_short |
Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate |
title_full |
Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate |
title_fullStr |
Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate |
title_full_unstemmed |
Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate |
title_sort |
Low Source/Drain Contact Resistance for AlGaN/GaN HEMTs with High Al Concentration and Si-HP [111] Substrate |
author_id_str_mv |
1329a42020e44fdd13de2f20d5143253 |
author_id_fullname_str_mv |
1329a42020e44fdd13de2f20d5143253_***_Karol Kalna |
author |
Karol Kalna |
author2 |
S. J. Duffy B. Benbakhti M. Mattalah W. Zhang M. Bouchilaoun M. Boucherta K. Kalna N. Bourzgui H. Maher A. Soltani Karol Kalna |
format |
Journal article |
container_title |
ECS Journal of Solid State Science and Technology |
container_volume |
6 |
container_issue |
11 |
container_start_page |
S3040 |
publishDate |
2017 |
institution |
Swansea University |
issn |
2162-8769 2162-8777 |
doi_str_mv |
10.1149/2.0111711jss |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
An optimized fabrication process of ohmic contacts is proposed to reduce the source/drain access resistance (RC) and enhance DC/RF performance of AlGaN/GaN HEMTs with a high Al concentration. We show that source/drain RC can be considerably lowered by (i) optimally etching into the barrier layer using Ar+ ion beam, and by (ii) forming recessed contact metallization using an optimized Ti/Al/Ni/Au (12 nm/200 nm/40 nm/100 nm) multilayers. We found that a low RC of ∼0.3 Ω.mm can be achieved by etching closer to the 2-Dimensional Electron Gas (2DEG) at an optimum etching depth, 75% of the barrier thickness, followed by a rapid thermal annealing at 850°C. This is due to the very small distance between the alloy and the 2DEG (higher electric field) as shown by 2D drift-diffusion simulations combined with Transmission Line Model (TLM) extractions. |
published_date |
2017-09-07T13:17:08Z |
_version_ |
1821320967306084352 |
score |
11.350958 |