Journal article 1283 views 450 downloads
Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy
Physical Chemistry Chemical Physics, Volume: 19, Issue: 7, Pages: 5246 - 5253
Swansea University Authors: Katherine Hooper, Michael Newman, Simone Meroni , Jenny Baker , Trystan Watson , Wing Chung Tsoi
-
PDF | Accepted Manuscript
Download (838.5KB)
DOI (Published version): 10.1039/c6cp05123e
Abstract
The key challenges for perovskite solar cells include their poor stability and film homogeneity. Studying the degradation and homogeneity of perovskite layers within device structures can be challenging but critical to the understanding of stability and effect of processing in real life conditions....
Published in: | Physical Chemistry Chemical Physics |
---|---|
ISSN: | 1463-9076 1463-9084 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa31892 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2017-02-09T14:55:56Z |
---|---|
last_indexed |
2021-01-15T03:50:22Z |
id |
cronfa31892 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-01-14T13:13:20.6297524</datestamp><bib-version>v2</bib-version><id>31892</id><entry>2017-02-09</entry><title>Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy</title><swanseaauthors><author><sid>3607f6787dc810c0ed1fdc49ea2b5e63</sid><firstname>Katherine</firstname><surname>Hooper</surname><name>Katherine Hooper</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>051a4bb1b12de491967ad8f0a0bece3c</sid><firstname>Michael</firstname><surname>Newman</surname><name>Michael Newman</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>78a4cf80ab2fe6cca80716b5d357d8dd</sid><ORCID>0000-0002-6901-772X</ORCID><firstname>Simone</firstname><surname>Meroni</surname><name>Simone Meroni</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6913b56f36f0c8cd34d8c9040d2df460</sid><ORCID>0000-0003-3530-1957</ORCID><firstname>Jenny</firstname><surname>Baker</surname><name>Jenny Baker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e5f541df6635a9a8e1a579ff2de5d56</sid><ORCID>0000-0003-3836-5139</ORCID><firstname>Wing Chung</firstname><surname>Tsoi</surname><name>Wing Chung Tsoi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-02-09</date><deptcode>MTLS</deptcode><abstract>The key challenges for perovskite solar cells include their poor stability and film homogeneity. Studying the degradation and homogeneity of perovskite layers within device structures can be challenging but critical to the understanding of stability and effect of processing in real life conditions. We show that Raman spectroscopy (RS) is a unique and powerful method (simple and fast) to probe the degradation of the perovskite film within the device structure and image perovskite formation. We demonstrate that RS can be used to directly probe chemical (PbI2) and physical (dihydrated phase) degradation of a perovskite film, and estimate the relative amount of the degradation species formed, mapping its distribution with ∼1 μm spatial resolution. This has been applied to mapping a large area perovskite module to characterise the efficacy of PbI2 to perovskite conversion. We also use RS to study the degradation species and kinetics under diverse accelerated degradation conditions (temperature and humidity) in situ. These capabilities are difficult to achieve with other methods, presenting RS as an important tool to gain understanding of the degradation and effect of processing on perovskite-based photovoltaic devices.</abstract><type>Journal Article</type><journal>Physical Chemistry Chemical Physics</journal><volume>19</volume><journalNumber>7</journalNumber><paginationStart>5246</paginationStart><paginationEnd>5253</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1463-9076</issnPrint><issnElectronic>1463-9084</issnElectronic><keywords/><publishedDay>2</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-02-02</publishedDate><doi>10.1039/c6cp05123e</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-14T13:13:20.6297524</lastEdited><Created>2017-02-09T09:10:51.5697157</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Katherine</firstname><surname>Hooper</surname><order>1</order></author><author><firstname>H. K. H.</firstname><surname>Lee</surname><order>2</order></author><author><firstname>Michael</firstname><surname>Newman</surname><order>3</order></author><author><firstname>Simone</firstname><surname>Meroni</surname><orcid>0000-0002-6901-772X</orcid><order>4</order></author><author><firstname>Jenny</firstname><surname>Baker</surname><orcid>0000-0003-3530-1957</orcid><order>5</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>6</order></author><author><firstname>Wing Chung</firstname><surname>Tsoi</surname><orcid>0000-0003-3836-5139</orcid><order>7</order></author></authors><documents><document><filename>0031892-09022017091200.pdf</filename><originalFilename>hooper2017.pdf</originalFilename><uploaded>2017-02-09T09:12:00.1030000</uploaded><type>Output</type><contentLength>837616</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-02-02T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-01-14T13:13:20.6297524 v2 31892 2017-02-09 Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy 3607f6787dc810c0ed1fdc49ea2b5e63 Katherine Hooper Katherine Hooper true false 051a4bb1b12de491967ad8f0a0bece3c Michael Newman Michael Newman true false 78a4cf80ab2fe6cca80716b5d357d8dd 0000-0002-6901-772X Simone Meroni Simone Meroni true false 6913b56f36f0c8cd34d8c9040d2df460 0000-0003-3530-1957 Jenny Baker Jenny Baker true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 7e5f541df6635a9a8e1a579ff2de5d56 0000-0003-3836-5139 Wing Chung Tsoi Wing Chung Tsoi true false 2017-02-09 MTLS The key challenges for perovskite solar cells include their poor stability and film homogeneity. Studying the degradation and homogeneity of perovskite layers within device structures can be challenging but critical to the understanding of stability and effect of processing in real life conditions. We show that Raman spectroscopy (RS) is a unique and powerful method (simple and fast) to probe the degradation of the perovskite film within the device structure and image perovskite formation. We demonstrate that RS can be used to directly probe chemical (PbI2) and physical (dihydrated phase) degradation of a perovskite film, and estimate the relative amount of the degradation species formed, mapping its distribution with ∼1 μm spatial resolution. This has been applied to mapping a large area perovskite module to characterise the efficacy of PbI2 to perovskite conversion. We also use RS to study the degradation species and kinetics under diverse accelerated degradation conditions (temperature and humidity) in situ. These capabilities are difficult to achieve with other methods, presenting RS as an important tool to gain understanding of the degradation and effect of processing on perovskite-based photovoltaic devices. Journal Article Physical Chemistry Chemical Physics 19 7 5246 5253 1463-9076 1463-9084 2 2 2017 2017-02-02 10.1039/c6cp05123e COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2021-01-14T13:13:20.6297524 2017-02-09T09:10:51.5697157 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Katherine Hooper 1 H. K. H. Lee 2 Michael Newman 3 Simone Meroni 0000-0002-6901-772X 4 Jenny Baker 0000-0003-3530-1957 5 Trystan Watson 0000-0002-8015-1436 6 Wing Chung Tsoi 0000-0003-3836-5139 7 0031892-09022017091200.pdf hooper2017.pdf 2017-02-09T09:12:00.1030000 Output 837616 application/pdf Accepted Manuscript true 2018-02-02T00:00:00.0000000 true eng |
title |
Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy |
spellingShingle |
Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy Katherine Hooper Michael Newman Simone Meroni Jenny Baker Trystan Watson Wing Chung Tsoi |
title_short |
Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy |
title_full |
Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy |
title_fullStr |
Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy |
title_full_unstemmed |
Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy |
title_sort |
Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy |
author_id_str_mv |
3607f6787dc810c0ed1fdc49ea2b5e63 051a4bb1b12de491967ad8f0a0bece3c 78a4cf80ab2fe6cca80716b5d357d8dd 6913b56f36f0c8cd34d8c9040d2df460 a210327b52472cfe8df9b8108d661457 7e5f541df6635a9a8e1a579ff2de5d56 |
author_id_fullname_str_mv |
3607f6787dc810c0ed1fdc49ea2b5e63_***_Katherine Hooper 051a4bb1b12de491967ad8f0a0bece3c_***_Michael Newman 78a4cf80ab2fe6cca80716b5d357d8dd_***_Simone Meroni 6913b56f36f0c8cd34d8c9040d2df460_***_Jenny Baker a210327b52472cfe8df9b8108d661457_***_Trystan Watson 7e5f541df6635a9a8e1a579ff2de5d56_***_Wing Chung Tsoi |
author |
Katherine Hooper Michael Newman Simone Meroni Jenny Baker Trystan Watson Wing Chung Tsoi |
author2 |
Katherine Hooper H. K. H. Lee Michael Newman Simone Meroni Jenny Baker Trystan Watson Wing Chung Tsoi |
format |
Journal article |
container_title |
Physical Chemistry Chemical Physics |
container_volume |
19 |
container_issue |
7 |
container_start_page |
5246 |
publishDate |
2017 |
institution |
Swansea University |
issn |
1463-9076 1463-9084 |
doi_str_mv |
10.1039/c6cp05123e |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
The key challenges for perovskite solar cells include their poor stability and film homogeneity. Studying the degradation and homogeneity of perovskite layers within device structures can be challenging but critical to the understanding of stability and effect of processing in real life conditions. We show that Raman spectroscopy (RS) is a unique and powerful method (simple and fast) to probe the degradation of the perovskite film within the device structure and image perovskite formation. We demonstrate that RS can be used to directly probe chemical (PbI2) and physical (dihydrated phase) degradation of a perovskite film, and estimate the relative amount of the degradation species formed, mapping its distribution with ∼1 μm spatial resolution. This has been applied to mapping a large area perovskite module to characterise the efficacy of PbI2 to perovskite conversion. We also use RS to study the degradation species and kinetics under diverse accelerated degradation conditions (temperature and humidity) in situ. These capabilities are difficult to achieve with other methods, presenting RS as an important tool to gain understanding of the degradation and effect of processing on perovskite-based photovoltaic devices. |
published_date |
2017-02-02T03:39:00Z |
_version_ |
1763751745849131008 |
score |
11.036531 |