Journal article 1569 views 241 downloads
Homogeneous and highly controlled deposition of low viscosity inks and application on fully printable perovskite solar cells
Science and Technology of Advanced Materials, Volume: 19, Issue: 1, Pages: 1 - 9
Swansea University Authors: Simone Meroni , Youmna Mouhamad, Francesca De Rossi , Adam Pockett, Jenny Baker , Justin Searle , Matt Carnie , Eifion Jewell , Trystan Watson
-
PDF | Version of Record
Download (1.16MB)
DOI (Published version): 10.1080/14686996.2017.1406777
Abstract
The fully printed, hole-transporter-free carbon perovskite solar cell structure incorporating a triple mesoscopic layer has emerged as a possible frontrunner for early industrialisation. It is an attractive structure because it can be fabricated by the simple sequential screen printing and sintering...
Published in: | Science and Technology of Advanced Materials |
---|---|
ISSN: | 1468-6996 1878-5514 |
Published: |
Taylor & Francis
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa37650 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
The fully printed, hole-transporter-free carbon perovskite solar cell structure incorporating a triple mesoscopic layer has emerged as a possible frontrunner for early industrialisation. It is an attractive structure because it can be fabricated by the simple sequential screen printing and sintering of titania, zirconia, and carbon. The device is finalised by manual dropping of a perovskite precursor solution onto the carbon which subsequently infiltrates. This stage in device fabrication is inhomogeneous, ineffective for large areas, and prone to human error. Here we introduce an automated deposition and infiltration system using a robotic dispenser and mesh which delivers the perovskite precursor uniformly to the carbon surface over a large area. It has been successfully used to prepare perovskite solar cells with over 9% efficiency. Cells, prepared by this robotic mesh deposition, showed comparable performance to reference cells, made by standard drop deposition, confirming this approach to be effective and reliable. X-ray diffraction and Raman spectroscopy were used to confirm the uniformity of the deposition over a large area. |
---|---|
Keywords: |
Solar cell, up-scaling, carbon, perovskite, printing, Raman, mapping |
College: |
Faculty of Science and Engineering |
Issue: |
1 |
Start Page: |
1 |
End Page: |
9 |