No Cover Image

Journal article 51 views 15 downloads

Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients

GERAINT HOWELLS, Shahin Mehraban, Tom Dunlop Orcid Logo, Nicholas Lavery Orcid Logo, Matt Carnie Orcid Logo, Matthew Burton Orcid Logo

Advanced Electronic Materials, Volume: 12, Issue: 2, Start page: e00649

Swansea University Authors: GERAINT HOWELLS, Shahin Mehraban, Tom Dunlop Orcid Logo, Nicholas Lavery Orcid Logo, Matt Carnie Orcid Logo

  • aelm.202500649.pdf

    PDF | Version of Record

    © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License.

    Download (3.98MB)

Check full text

DOI (Published version): 10.1002/aelm.202500649

Abstract

In this work, we present a cost‐effective, scalable approach for fabricating thermoelectric (TE) generators using p‐type tin selenide (SnSe) bonded in a cement matrix via a slurry mold casting technique. Traditional methods for manufacturing SnSe‐based TE materials are energy‐intensive and economica...

Full description

Published in: Advanced Electronic Materials
ISSN: 2199-160X
Published: 2026
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa71313
first_indexed 2026-01-27T14:44:12Z
last_indexed 2026-01-28T05:36:35Z
id cronfa71313
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2026-01-27T14:51:15.5542419</datestamp><bib-version>v2</bib-version><id>71313</id><entry>2026-01-27</entry><title>Cement&#x2010;SnSe Thermoelectric Devices With High Seebeck Coefficients</title><swanseaauthors><author><sid>393c2919383f001fb36090b70968c69b</sid><firstname>GERAINT</firstname><surname>HOWELLS</surname><name>GERAINT HOWELLS</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c7e4a4152b2cf403da129be7d1c2904d</sid><ORCID/><firstname>Shahin</firstname><surname>Mehraban</surname><name>Shahin Mehraban</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>809395460ab1e6b53a906b136d919c41</sid><ORCID>0000-0002-5851-8713</ORCID><firstname>Tom</firstname><surname>Dunlop</surname><name>Tom Dunlop</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9f102ff59824fd4f7ce3d40144304395</sid><ORCID>0000-0003-0953-5936</ORCID><firstname>Nicholas</firstname><surname>Lavery</surname><name>Nicholas Lavery</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2026-01-27</date><abstract>In this work, we present a cost&#x2010;effective, scalable approach for fabricating thermoelectric (TE) generators using p&#x2010;type tin selenide (SnSe) bonded in a cement matrix via a slurry mold casting technique. Traditional methods for manufacturing SnSe&#x2010;based TE materials are energy&#x2010;intensive and economically unfeasible. By contrast, our approach employs common Portland cement as a binder, offering a viable alternative that reduces processing time, complexity, and cost. Ball&#x2010;milled SnSe is mixed with varying concentrations of cement and cast into molds for samples, resulting in dimensions of 1.5 &#xD7; 1.5 &#xD7; 0.75 cm3. The best&#x2010;performing formulations are 0.2 wt.% cement, which exhibited a power factor of 77 &#xB5;W m&#x2212;1&#xB7;K&#x2212;2 at 800 K and the 0.3 wt.% cement sample, which has a peak ZT of 0.3 at 850 K, the highest ZT of any cement containing TE to date. A proof&#x2010;of&#x2010;concept thermoelectric generator (TEG) comprising six legs of SnSe&#x2010;cement composite demonstrated a peak power output of &#x223C;73 &#xB5;W at 850 K. Furthermore, calculations show that using the cement&#x2010;bonded SnSe to harvest industrial waste heat in a steel&#x2010;making environment can yield a potential 1521.3 W m&#x2212;2 of electrical energy.</abstract><type>Journal Article</type><journal>Advanced Electronic Materials</journal><volume>12</volume><journalNumber>2</journalNumber><paginationStart>e00649</paginationStart><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2199-160X</issnPrint><issnElectronic/><keywords>cement; SnSe; thermoelectrics; tin selenide</keywords><publishedDay>27</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2026</publishedYear><publishedDate>2026-01-27</publishedDate><doi>10.1002/aelm.202500649</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>European Regional Development Fund Grant: c80892; Engineering and Physical Sciences Research Council Grant: EP/N020863/1, EP/S018107/1, EP/L015099/1, EP/M028267/1</funders><projectreference/><lastEdited>2026-01-27T14:51:15.5542419</lastEdited><Created>2026-01-27T14:31:47.1940017</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>GERAINT</firstname><surname>HOWELLS</surname><order>1</order></author><author><firstname>Shahin</firstname><surname>Mehraban</surname><orcid/><order>2</order></author><author><firstname>Tom</firstname><surname>Dunlop</surname><orcid>0000-0002-5851-8713</orcid><order>3</order></author><author><firstname>Nicholas</firstname><surname>Lavery</surname><orcid>0000-0003-0953-5936</orcid><order>4</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>5</order></author><author><firstname>Matthew</firstname><surname>Burton</surname><orcid>https://orcid.org/0000-0002-0376-6322</orcid><order>6</order></author></authors><documents><document><filename>71313__36113__d6cfbe04bede4804a172e1402e654ce5.pdf</filename><originalFilename>aelm.202500649.pdf</originalFilename><uploaded>2026-01-27T14:31:47.1690584</uploaded><type>Output</type><contentLength>4176293</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2026-01-27T14:51:15.5542419 v2 71313 2026-01-27 Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients 393c2919383f001fb36090b70968c69b GERAINT HOWELLS GERAINT HOWELLS true false c7e4a4152b2cf403da129be7d1c2904d Shahin Mehraban Shahin Mehraban true false 809395460ab1e6b53a906b136d919c41 0000-0002-5851-8713 Tom Dunlop Tom Dunlop true false 9f102ff59824fd4f7ce3d40144304395 0000-0003-0953-5936 Nicholas Lavery Nicholas Lavery true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false 2026-01-27 In this work, we present a cost‐effective, scalable approach for fabricating thermoelectric (TE) generators using p‐type tin selenide (SnSe) bonded in a cement matrix via a slurry mold casting technique. Traditional methods for manufacturing SnSe‐based TE materials are energy‐intensive and economically unfeasible. By contrast, our approach employs common Portland cement as a binder, offering a viable alternative that reduces processing time, complexity, and cost. Ball‐milled SnSe is mixed with varying concentrations of cement and cast into molds for samples, resulting in dimensions of 1.5 × 1.5 × 0.75 cm3. The best‐performing formulations are 0.2 wt.% cement, which exhibited a power factor of 77 µW m−1·K−2 at 800 K and the 0.3 wt.% cement sample, which has a peak ZT of 0.3 at 850 K, the highest ZT of any cement containing TE to date. A proof‐of‐concept thermoelectric generator (TEG) comprising six legs of SnSe‐cement composite demonstrated a peak power output of ∼73 µW at 850 K. Furthermore, calculations show that using the cement‐bonded SnSe to harvest industrial waste heat in a steel‐making environment can yield a potential 1521.3 W m−2 of electrical energy. Journal Article Advanced Electronic Materials 12 2 e00649 2199-160X cement; SnSe; thermoelectrics; tin selenide 27 1 2026 2026-01-27 10.1002/aelm.202500649 COLLEGE NANME COLLEGE CODE Swansea University Another institution paid the OA fee European Regional Development Fund Grant: c80892; Engineering and Physical Sciences Research Council Grant: EP/N020863/1, EP/S018107/1, EP/L015099/1, EP/M028267/1 2026-01-27T14:51:15.5542419 2026-01-27T14:31:47.1940017 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering GERAINT HOWELLS 1 Shahin Mehraban 2 Tom Dunlop 0000-0002-5851-8713 3 Nicholas Lavery 0000-0003-0953-5936 4 Matt Carnie 0000-0002-4232-1967 5 Matthew Burton https://orcid.org/0000-0002-0376-6322 6 71313__36113__d6cfbe04bede4804a172e1402e654ce5.pdf aelm.202500649.pdf 2026-01-27T14:31:47.1690584 Output 4176293 application/pdf Version of Record true © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License. true eng http://creativecommons.org/licenses/by/4.0/
title Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients
spellingShingle Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients
GERAINT HOWELLS
Shahin Mehraban
Tom Dunlop
Nicholas Lavery
Matt Carnie
title_short Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients
title_full Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients
title_fullStr Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients
title_full_unstemmed Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients
title_sort Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients
author_id_str_mv 393c2919383f001fb36090b70968c69b
c7e4a4152b2cf403da129be7d1c2904d
809395460ab1e6b53a906b136d919c41
9f102ff59824fd4f7ce3d40144304395
73b367694366a646b90bb15db32bb8c0
author_id_fullname_str_mv 393c2919383f001fb36090b70968c69b_***_GERAINT HOWELLS
c7e4a4152b2cf403da129be7d1c2904d_***_Shahin Mehraban
809395460ab1e6b53a906b136d919c41_***_Tom Dunlop
9f102ff59824fd4f7ce3d40144304395_***_Nicholas Lavery
73b367694366a646b90bb15db32bb8c0_***_Matt Carnie
author GERAINT HOWELLS
Shahin Mehraban
Tom Dunlop
Nicholas Lavery
Matt Carnie
author2 GERAINT HOWELLS
Shahin Mehraban
Tom Dunlop
Nicholas Lavery
Matt Carnie
Matthew Burton
format Journal article
container_title Advanced Electronic Materials
container_volume 12
container_issue 2
container_start_page e00649
publishDate 2026
institution Swansea University
issn 2199-160X
doi_str_mv 10.1002/aelm.202500649
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description In this work, we present a cost‐effective, scalable approach for fabricating thermoelectric (TE) generators using p‐type tin selenide (SnSe) bonded in a cement matrix via a slurry mold casting technique. Traditional methods for manufacturing SnSe‐based TE materials are energy‐intensive and economically unfeasible. By contrast, our approach employs common Portland cement as a binder, offering a viable alternative that reduces processing time, complexity, and cost. Ball‐milled SnSe is mixed with varying concentrations of cement and cast into molds for samples, resulting in dimensions of 1.5 × 1.5 × 0.75 cm3. The best‐performing formulations are 0.2 wt.% cement, which exhibited a power factor of 77 µW m−1·K−2 at 800 K and the 0.3 wt.% cement sample, which has a peak ZT of 0.3 at 850 K, the highest ZT of any cement containing TE to date. A proof‐of‐concept thermoelectric generator (TEG) comprising six legs of SnSe‐cement composite demonstrated a peak power output of ∼73 µW at 850 K. Furthermore, calculations show that using the cement‐bonded SnSe to harvest industrial waste heat in a steel‐making environment can yield a potential 1521.3 W m−2 of electrical energy.
published_date 2026-01-27T05:35:01Z
_version_ 1856987097861193728
score 11.096068