Journal article 51 views 15 downloads
Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients
Advanced Electronic Materials, Volume: 12, Issue: 2, Start page: e00649
Swansea University Authors:
GERAINT HOWELLS, Shahin Mehraban, Tom Dunlop , Nicholas Lavery
, Matt Carnie
-
PDF | Version of Record
© 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License.
Download (3.98MB)
DOI (Published version): 10.1002/aelm.202500649
Abstract
In this work, we present a cost‐effective, scalable approach for fabricating thermoelectric (TE) generators using p‐type tin selenide (SnSe) bonded in a cement matrix via a slurry mold casting technique. Traditional methods for manufacturing SnSe‐based TE materials are energy‐intensive and economica...
| Published in: | Advanced Electronic Materials |
|---|---|
| ISSN: | 2199-160X |
| Published: |
2026
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa71313 |
| first_indexed |
2026-01-27T14:44:12Z |
|---|---|
| last_indexed |
2026-01-28T05:36:35Z |
| id |
cronfa71313 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2026-01-27T14:51:15.5542419</datestamp><bib-version>v2</bib-version><id>71313</id><entry>2026-01-27</entry><title>Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients</title><swanseaauthors><author><sid>393c2919383f001fb36090b70968c69b</sid><firstname>GERAINT</firstname><surname>HOWELLS</surname><name>GERAINT HOWELLS</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c7e4a4152b2cf403da129be7d1c2904d</sid><ORCID/><firstname>Shahin</firstname><surname>Mehraban</surname><name>Shahin Mehraban</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>809395460ab1e6b53a906b136d919c41</sid><ORCID>0000-0002-5851-8713</ORCID><firstname>Tom</firstname><surname>Dunlop</surname><name>Tom Dunlop</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9f102ff59824fd4f7ce3d40144304395</sid><ORCID>0000-0003-0953-5936</ORCID><firstname>Nicholas</firstname><surname>Lavery</surname><name>Nicholas Lavery</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2026-01-27</date><abstract>In this work, we present a cost‐effective, scalable approach for fabricating thermoelectric (TE) generators using p‐type tin selenide (SnSe) bonded in a cement matrix via a slurry mold casting technique. Traditional methods for manufacturing SnSe‐based TE materials are energy‐intensive and economically unfeasible. By contrast, our approach employs common Portland cement as a binder, offering a viable alternative that reduces processing time, complexity, and cost. Ball‐milled SnSe is mixed with varying concentrations of cement and cast into molds for samples, resulting in dimensions of 1.5 × 1.5 × 0.75 cm3. The best‐performing formulations are 0.2 wt.% cement, which exhibited a power factor of 77 µW m−1·K−2 at 800 K and the 0.3 wt.% cement sample, which has a peak ZT of 0.3 at 850 K, the highest ZT of any cement containing TE to date. A proof‐of‐concept thermoelectric generator (TEG) comprising six legs of SnSe‐cement composite demonstrated a peak power output of ∼73 µW at 850 K. Furthermore, calculations show that using the cement‐bonded SnSe to harvest industrial waste heat in a steel‐making environment can yield a potential 1521.3 W m−2 of electrical energy.</abstract><type>Journal Article</type><journal>Advanced Electronic Materials</journal><volume>12</volume><journalNumber>2</journalNumber><paginationStart>e00649</paginationStart><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2199-160X</issnPrint><issnElectronic/><keywords>cement; SnSe; thermoelectrics; tin selenide</keywords><publishedDay>27</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2026</publishedYear><publishedDate>2026-01-27</publishedDate><doi>10.1002/aelm.202500649</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>European Regional Development Fund Grant: c80892;
Engineering and Physical Sciences Research Council Grant: EP/N020863/1, EP/S018107/1, EP/L015099/1, EP/M028267/1</funders><projectreference/><lastEdited>2026-01-27T14:51:15.5542419</lastEdited><Created>2026-01-27T14:31:47.1940017</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>GERAINT</firstname><surname>HOWELLS</surname><order>1</order></author><author><firstname>Shahin</firstname><surname>Mehraban</surname><orcid/><order>2</order></author><author><firstname>Tom</firstname><surname>Dunlop</surname><orcid>0000-0002-5851-8713</orcid><order>3</order></author><author><firstname>Nicholas</firstname><surname>Lavery</surname><orcid>0000-0003-0953-5936</orcid><order>4</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>5</order></author><author><firstname>Matthew</firstname><surname>Burton</surname><orcid>https://orcid.org/0000-0002-0376-6322</orcid><order>6</order></author></authors><documents><document><filename>71313__36113__d6cfbe04bede4804a172e1402e654ce5.pdf</filename><originalFilename>aelm.202500649.pdf</originalFilename><uploaded>2026-01-27T14:31:47.1690584</uploaded><type>Output</type><contentLength>4176293</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2026-01-27T14:51:15.5542419 v2 71313 2026-01-27 Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients 393c2919383f001fb36090b70968c69b GERAINT HOWELLS GERAINT HOWELLS true false c7e4a4152b2cf403da129be7d1c2904d Shahin Mehraban Shahin Mehraban true false 809395460ab1e6b53a906b136d919c41 0000-0002-5851-8713 Tom Dunlop Tom Dunlop true false 9f102ff59824fd4f7ce3d40144304395 0000-0003-0953-5936 Nicholas Lavery Nicholas Lavery true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false 2026-01-27 In this work, we present a cost‐effective, scalable approach for fabricating thermoelectric (TE) generators using p‐type tin selenide (SnSe) bonded in a cement matrix via a slurry mold casting technique. Traditional methods for manufacturing SnSe‐based TE materials are energy‐intensive and economically unfeasible. By contrast, our approach employs common Portland cement as a binder, offering a viable alternative that reduces processing time, complexity, and cost. Ball‐milled SnSe is mixed with varying concentrations of cement and cast into molds for samples, resulting in dimensions of 1.5 × 1.5 × 0.75 cm3. The best‐performing formulations are 0.2 wt.% cement, which exhibited a power factor of 77 µW m−1·K−2 at 800 K and the 0.3 wt.% cement sample, which has a peak ZT of 0.3 at 850 K, the highest ZT of any cement containing TE to date. A proof‐of‐concept thermoelectric generator (TEG) comprising six legs of SnSe‐cement composite demonstrated a peak power output of ∼73 µW at 850 K. Furthermore, calculations show that using the cement‐bonded SnSe to harvest industrial waste heat in a steel‐making environment can yield a potential 1521.3 W m−2 of electrical energy. Journal Article Advanced Electronic Materials 12 2 e00649 2199-160X cement; SnSe; thermoelectrics; tin selenide 27 1 2026 2026-01-27 10.1002/aelm.202500649 COLLEGE NANME COLLEGE CODE Swansea University Another institution paid the OA fee European Regional Development Fund Grant: c80892; Engineering and Physical Sciences Research Council Grant: EP/N020863/1, EP/S018107/1, EP/L015099/1, EP/M028267/1 2026-01-27T14:51:15.5542419 2026-01-27T14:31:47.1940017 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering GERAINT HOWELLS 1 Shahin Mehraban 2 Tom Dunlop 0000-0002-5851-8713 3 Nicholas Lavery 0000-0003-0953-5936 4 Matt Carnie 0000-0002-4232-1967 5 Matthew Burton https://orcid.org/0000-0002-0376-6322 6 71313__36113__d6cfbe04bede4804a172e1402e654ce5.pdf aelm.202500649.pdf 2026-01-27T14:31:47.1690584 Output 4176293 application/pdf Version of Record true © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License. true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients |
| spellingShingle |
Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients GERAINT HOWELLS Shahin Mehraban Tom Dunlop Nicholas Lavery Matt Carnie |
| title_short |
Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients |
| title_full |
Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients |
| title_fullStr |
Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients |
| title_full_unstemmed |
Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients |
| title_sort |
Cement‐SnSe Thermoelectric Devices With High Seebeck Coefficients |
| author_id_str_mv |
393c2919383f001fb36090b70968c69b c7e4a4152b2cf403da129be7d1c2904d 809395460ab1e6b53a906b136d919c41 9f102ff59824fd4f7ce3d40144304395 73b367694366a646b90bb15db32bb8c0 |
| author_id_fullname_str_mv |
393c2919383f001fb36090b70968c69b_***_GERAINT HOWELLS c7e4a4152b2cf403da129be7d1c2904d_***_Shahin Mehraban 809395460ab1e6b53a906b136d919c41_***_Tom Dunlop 9f102ff59824fd4f7ce3d40144304395_***_Nicholas Lavery 73b367694366a646b90bb15db32bb8c0_***_Matt Carnie |
| author |
GERAINT HOWELLS Shahin Mehraban Tom Dunlop Nicholas Lavery Matt Carnie |
| author2 |
GERAINT HOWELLS Shahin Mehraban Tom Dunlop Nicholas Lavery Matt Carnie Matthew Burton |
| format |
Journal article |
| container_title |
Advanced Electronic Materials |
| container_volume |
12 |
| container_issue |
2 |
| container_start_page |
e00649 |
| publishDate |
2026 |
| institution |
Swansea University |
| issn |
2199-160X |
| doi_str_mv |
10.1002/aelm.202500649 |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
| document_store_str |
1 |
| active_str |
0 |
| description |
In this work, we present a cost‐effective, scalable approach for fabricating thermoelectric (TE) generators using p‐type tin selenide (SnSe) bonded in a cement matrix via a slurry mold casting technique. Traditional methods for manufacturing SnSe‐based TE materials are energy‐intensive and economically unfeasible. By contrast, our approach employs common Portland cement as a binder, offering a viable alternative that reduces processing time, complexity, and cost. Ball‐milled SnSe is mixed with varying concentrations of cement and cast into molds for samples, resulting in dimensions of 1.5 × 1.5 × 0.75 cm3. The best‐performing formulations are 0.2 wt.% cement, which exhibited a power factor of 77 µW m−1·K−2 at 800 K and the 0.3 wt.% cement sample, which has a peak ZT of 0.3 at 850 K, the highest ZT of any cement containing TE to date. A proof‐of‐concept thermoelectric generator (TEG) comprising six legs of SnSe‐cement composite demonstrated a peak power output of ∼73 µW at 850 K. Furthermore, calculations show that using the cement‐bonded SnSe to harvest industrial waste heat in a steel‐making environment can yield a potential 1521.3 W m−2 of electrical energy. |
| published_date |
2026-01-27T05:35:01Z |
| _version_ |
1856987097861193728 |
| score |
11.096068 |

