Conference Paper/Proceeding/Abstract 154 views 23 downloads
Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations
Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024), Volume: 466, Start page: 138
Swansea University Authors:
Fabian Zierler, Ed Bennett , Niccolo Forzano, Biagio Lucini
, Maurizio Piai
-
PDF | Accepted Manuscript
Download (637.84KB)
DOI (Published version): 10.22323/1.466.0138
Abstract
We measure the masses of the pseudoscalar flavour-singlet meson states in the Sp(4) gauge theory coupled to two Dirac fermions transforming in the fundamental representation and three Dirac fermions in the antisymmetric representation. This theory provides a compelling ultraviolet completion for the...
Published in: | Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024) |
---|---|
ISSN: | 1824-8039 |
Published: |
Trieste, Italy
Sissa Medialab
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa68044 |
first_indexed |
2024-10-22T17:27:08Z |
---|---|
last_indexed |
2025-03-14T09:03:32Z |
id |
cronfa68044 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>68044</id><entry>2024-10-22</entry><title>Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations</title><swanseaauthors><author><sid>7eb526fdce1693fc0b79f33e74cc182d</sid><firstname>Fabian</firstname><surname>Zierler</surname><name>Fabian Zierler</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e1a8e7927d2b093acdc54e74eac95e38</sid><ORCID>0000-0002-1678-6701</ORCID><firstname>Ed</firstname><surname>Bennett</surname><name>Ed Bennett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e60be1aa4478b6e530f4bdf6c1cf9857</sid><firstname>Niccolo</firstname><surname>Forzano</surname><name>Niccolo Forzano</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7e6fcfe060e07a351090e2a8aba363cf</sid><ORCID>0000-0001-8974-8266</ORCID><firstname>Biagio</firstname><surname>Lucini</surname><name>Biagio Lucini</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3ce295f2c7cc318bac7da18f9989d8c3</sid><ORCID>0000-0002-2251-0111</ORCID><firstname>Maurizio</firstname><surname>Piai</surname><name>Maurizio Piai</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-10-22</date><deptcode>BGPS</deptcode><abstract>We measure the masses of the pseudoscalar flavour-singlet meson states in the Sp(4) gauge theory coupled to two Dirac fermions transforming in the fundamental representation and three Dirac fermions in the antisymmetric representation. This theory provides a compelling ultraviolet completion for the minimal composite Higgs model implementing also partial compositeness for the top quark. The spectrum contains two, comparatively light, pseudoscalar flavour-singlet states, which mix with one another. One of them is a Nambu-Goldstone boson (in the massless limit), whereas the other receives a mass from the U(1)A axial anomaly. We demonstrate how to measure the mixing between these two states. For moderately heavy fermion masses, we find that the two wave functions are dominated by one of the fermion representations, mixing effects being small.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024)</journal><volume>466</volume><journalNumber/><paginationStart>138</paginationStart><paginationEnd/><publisher>Sissa Medialab</publisher><placeOfPublication>Trieste, Italy</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1824-8039</issnElectronic><keywords/><publishedDay>5</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-12-05</publishedDate><doi>10.22323/1.466.0138</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>EB and BL are supported by the EPSRC ExCALIBUR programme ExaTEPP (project EP/X017168/1). EB, BL, MP, FZ are supported by the STFC Consolidated Grant No. ST/X000648/1. EB is supported by the STFC Research Software Engineering Fellowship EP/V052489/1. NF is supported by the STFC Consolidated Grant No. ST/X508834/1. DKH is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B06033701) and the NRF grant MSIT 2021R1A4A5031460 funded by the Korean government. JWL is supported by IBS under the project code IBS-R018-D1. HH and CJDL are supported by the Taiwanese MoST grant 109-2112-M-009-006-MY3 and NSTC grant 112-2112-M-A49-021-MY3. CJDL is also supported by Grants No. 112-2639-M-002-006- ASP and No. 113-2119-M-007-013. BL and MP have been supported by the STFC Consolidated Grant No. ST/T000813/1 and by the the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 813942. DV is supported by the STFC under Consolidated Grant No. ST/X000680/1. Numerical simulations have been performed on the DiRAC Extreme Scaling service at The University of Edinburgh, and on the DiRAC Data Intensive service at Leicester. The DiRAC Extreme Scaling service is operated by the Edinburgh Parallel Computing Centre on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BEIS capital funding via STFC capital grant ST/R00238X/1 and STFC DiRAC Operations grant ST/R001006/1. DiRAC is part of the UKRI Digital Research Infrastructure</funders><projectreference/><lastEdited>2025-04-02T14:19:32.8765210</lastEdited><Created>2024-10-22T18:21:38.8751975</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Fabian</firstname><surname>Zierler</surname><order>1</order></author><author><firstname>Ed</firstname><surname>Bennett</surname><orcid>0000-0002-1678-6701</orcid><order>2</order></author><author><firstname>Niccolo</firstname><surname>Forzano</surname><order>3</order></author><author><firstname>Deog Ki</firstname><surname>Hong</surname><orcid>0000-0002-3923-4184</orcid><order>4</order></author><author><firstname>Ho</firstname><surname>Hsiao</surname><orcid>0000-0002-8522-5190</orcid><order>5</order></author><author><firstname>Jong-Wan</firstname><surname>Lee</surname><orcid>0000-0002-4616-2422</orcid><order>6</order></author><author><firstname>C.-J. David</firstname><surname>Lin</surname><orcid>0000-0003-3743-0840</orcid><order>7</order></author><author><firstname>Biagio</firstname><surname>Lucini</surname><orcid>0000-0001-8974-8266</orcid><order>8</order></author><author><firstname>Maurizio</firstname><surname>Piai</surname><orcid>0000-0002-2251-0111</orcid><order>9</order></author><author><firstname>Davide</firstname><surname>Vadacchino</surname><orcid>0000-0002-5783-5602</orcid><order>10</order></author></authors><documents><document><filename>68044__32677__95e1bba2842a4c0aa93023a2f0641f74.pdf</filename><originalFilename>2410.11412v1.pdf</originalFilename><uploaded>2024-10-22T18:26:52.1311077</uploaded><type>Output</type><contentLength>653149</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 68044 2024-10-22 Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations 7eb526fdce1693fc0b79f33e74cc182d Fabian Zierler Fabian Zierler true false e1a8e7927d2b093acdc54e74eac95e38 0000-0002-1678-6701 Ed Bennett Ed Bennett true false e60be1aa4478b6e530f4bdf6c1cf9857 Niccolo Forzano Niccolo Forzano true false 7e6fcfe060e07a351090e2a8aba363cf 0000-0001-8974-8266 Biagio Lucini Biagio Lucini true false 3ce295f2c7cc318bac7da18f9989d8c3 0000-0002-2251-0111 Maurizio Piai Maurizio Piai true false 2024-10-22 BGPS We measure the masses of the pseudoscalar flavour-singlet meson states in the Sp(4) gauge theory coupled to two Dirac fermions transforming in the fundamental representation and three Dirac fermions in the antisymmetric representation. This theory provides a compelling ultraviolet completion for the minimal composite Higgs model implementing also partial compositeness for the top quark. The spectrum contains two, comparatively light, pseudoscalar flavour-singlet states, which mix with one another. One of them is a Nambu-Goldstone boson (in the massless limit), whereas the other receives a mass from the U(1)A axial anomaly. We demonstrate how to measure the mixing between these two states. For moderately heavy fermion masses, we find that the two wave functions are dominated by one of the fermion representations, mixing effects being small. Conference Paper/Proceeding/Abstract Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024) 466 138 Sissa Medialab Trieste, Italy 1824-8039 5 12 2024 2024-12-05 10.22323/1.466.0138 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University Not Required EB and BL are supported by the EPSRC ExCALIBUR programme ExaTEPP (project EP/X017168/1). EB, BL, MP, FZ are supported by the STFC Consolidated Grant No. ST/X000648/1. EB is supported by the STFC Research Software Engineering Fellowship EP/V052489/1. NF is supported by the STFC Consolidated Grant No. ST/X508834/1. DKH is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B06033701) and the NRF grant MSIT 2021R1A4A5031460 funded by the Korean government. JWL is supported by IBS under the project code IBS-R018-D1. HH and CJDL are supported by the Taiwanese MoST grant 109-2112-M-009-006-MY3 and NSTC grant 112-2112-M-A49-021-MY3. CJDL is also supported by Grants No. 112-2639-M-002-006- ASP and No. 113-2119-M-007-013. BL and MP have been supported by the STFC Consolidated Grant No. ST/T000813/1 and by the the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 813942. DV is supported by the STFC under Consolidated Grant No. ST/X000680/1. Numerical simulations have been performed on the DiRAC Extreme Scaling service at The University of Edinburgh, and on the DiRAC Data Intensive service at Leicester. The DiRAC Extreme Scaling service is operated by the Edinburgh Parallel Computing Centre on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BEIS capital funding via STFC capital grant ST/R00238X/1 and STFC DiRAC Operations grant ST/R001006/1. DiRAC is part of the UKRI Digital Research Infrastructure 2025-04-02T14:19:32.8765210 2024-10-22T18:21:38.8751975 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Fabian Zierler 1 Ed Bennett 0000-0002-1678-6701 2 Niccolo Forzano 3 Deog Ki Hong 0000-0002-3923-4184 4 Ho Hsiao 0000-0002-8522-5190 5 Jong-Wan Lee 0000-0002-4616-2422 6 C.-J. David Lin 0000-0003-3743-0840 7 Biagio Lucini 0000-0001-8974-8266 8 Maurizio Piai 0000-0002-2251-0111 9 Davide Vadacchino 0000-0002-5783-5602 10 68044__32677__95e1bba2842a4c0aa93023a2f0641f74.pdf 2410.11412v1.pdf 2024-10-22T18:26:52.1311077 Output 653149 application/pdf Accepted Manuscript true false |
title |
Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations |
spellingShingle |
Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations Fabian Zierler Ed Bennett Niccolo Forzano Biagio Lucini Maurizio Piai |
title_short |
Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations |
title_full |
Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations |
title_fullStr |
Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations |
title_full_unstemmed |
Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations |
title_sort |
Flavour singlet mixing in Sp(4) gauge theory with fermions in multiple representations |
author_id_str_mv |
7eb526fdce1693fc0b79f33e74cc182d e1a8e7927d2b093acdc54e74eac95e38 e60be1aa4478b6e530f4bdf6c1cf9857 7e6fcfe060e07a351090e2a8aba363cf 3ce295f2c7cc318bac7da18f9989d8c3 |
author_id_fullname_str_mv |
7eb526fdce1693fc0b79f33e74cc182d_***_Fabian Zierler e1a8e7927d2b093acdc54e74eac95e38_***_Ed Bennett e60be1aa4478b6e530f4bdf6c1cf9857_***_Niccolo Forzano 7e6fcfe060e07a351090e2a8aba363cf_***_Biagio Lucini 3ce295f2c7cc318bac7da18f9989d8c3_***_Maurizio Piai |
author |
Fabian Zierler Ed Bennett Niccolo Forzano Biagio Lucini Maurizio Piai |
author2 |
Fabian Zierler Ed Bennett Niccolo Forzano Deog Ki Hong Ho Hsiao Jong-Wan Lee C.-J. David Lin Biagio Lucini Maurizio Piai Davide Vadacchino |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Proceedings of The 41st International Symposium on Lattice Field Theory — PoS(LATTICE2024) |
container_volume |
466 |
container_start_page |
138 |
publishDate |
2024 |
institution |
Swansea University |
issn |
1824-8039 |
doi_str_mv |
10.22323/1.466.0138 |
publisher |
Sissa Medialab |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
We measure the masses of the pseudoscalar flavour-singlet meson states in the Sp(4) gauge theory coupled to two Dirac fermions transforming in the fundamental representation and three Dirac fermions in the antisymmetric representation. This theory provides a compelling ultraviolet completion for the minimal composite Higgs model implementing also partial compositeness for the top quark. The spectrum contains two, comparatively light, pseudoscalar flavour-singlet states, which mix with one another. One of them is a Nambu-Goldstone boson (in the massless limit), whereas the other receives a mass from the U(1)A axial anomaly. We demonstrate how to measure the mixing between these two states. For moderately heavy fermion masses, we find that the two wave functions are dominated by one of the fermion representations, mixing effects being small. |
published_date |
2024-12-05T14:19:34Z |
_version_ |
1828297086975606784 |
score |
10.651516 |