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We measure the masses of the pseudoscalar flavour-singlet meson states in the 𝑆𝑝(4) gauge
theory coupled to two Dirac fermions transforming in the fundamental representation and three
Dirac fermions in the antisymmetric representation. This theory provides a compelling ultraviolet
completion for the minimal composite Higgs model implementing also partial compositeness for
the top quark. The spectrum contains two, comparatively light, pseudoscalar flavour-singlet states,
which mix with one another. One of them is a Nambu-Goldstone boson (in the massless limit),
whereas the other receives a mass from the𝑈 (1)𝐴 axial anomaly. We demonstrate how to measure
the mixing between these two states. For moderately heavy fermion masses, we find that the two
wave functions are dominated by one of the fermion representations, mixing effects being small.
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1. Introduction

Gauge theories with matter field content transforming as an admixture of representations of
the gauge group have been proposed as short-distance completions of composite Higgs models that
implement also partial compositeness for the top quark [1–4]. In these models, the Higgs boson
is a composite state of fermions (hyperquarks) charged under a new, non-Abelian gauge symmetry
mediated by additional gauge bosons (hypergluons). The global symmetries of these theories
factorize into two (non-Abelian) cosets, one of which is related to the physics of the Higgs boson,
and the other to the properties of the heavy quarks (the top).1 The 𝑆𝑝(4) gauge theory coupled
to 𝑁as = 3 Dirac fermions transforming in the two-index antisymmetric representation and 𝑁f = 2
in the fundamental is the minimal such theory that meets all phenomenological requirements, and
can be tested numerically on the lattice [6]—see also the reviews [7–9], and the summary tables in
Refs. [10–12].

Interest in new gauge theories with 𝑆𝑝(2𝑁) gauge group has motivated the development of the
research programme of Theoretical Explorations on the Lattice with Orthogonal and Symplectic
groups (TELOS) [13–26]—see also Refs. [27–30] for related applications to dark matter models—
and the work reported in this contribution, and the associated publication [26], are part of this
programme. Other lattice studies of gauge theories with mixed representations include the 𝑆𝑈 (4)
gauge theory with fundamental and antisymmetric Dirac fermions [31–41], and 𝑆𝑈 (2) gauge theory
with fundamental and adjoint matter [42, 43].

A distinctive feature of gauge theories with matter in an admixture of multiple representations is
the occurrence of an additional, flavour-singlet, Abelian pseudo-Nambu-Goldstone boson (pNGB),
with peculiar phenomenological properties [44, 45]. This is due to the existence of an independent
axial 𝑈 (1) current for each fermion representation. Only one combination of those currents is
broken by the axial anomaly. The associated state (which in QCD can be identified with the 𝜂′

meson) acquires a mass even in the limit in which the hyperquarks are massless [46–48], while the
remaining flavour-singlet pseudoscalar state does not. This phenomenology of the additional pNGB
has been studied in the context of composite Higgs models [12, 49, 50]. The relevant leading-order
description within chiral perturbation theory has been developed in Ref. [45]. For the purposes of
this work we refer to the light pNGB state as 𝜂′

𝑙
, while the state associated with the axial anomaly

is denoted as 𝜂′
ℎ
. This contribution reports the highlights of non-perturbative lattice investigations

into the masses of the 𝜂′
𝑙
and 𝜂′

ℎ
, as well as their mixing angle, 𝜙, and we refer the reader to Ref. [26]

for details and extensive discussions.

2. Lattice field theory observables

The (Minkowski space) Lagrangian density of the strongly interacting theory is given by

L = −1
2

Tr𝐺𝜇𝜈𝐺
𝜇𝜈 +

2∑︁
𝐼=1

�̄�𝐼
(
𝑖𝛾𝜇𝐷𝜇 − 𝑚f

)
𝑄𝐼 +

3∑︁
𝐾=1

Ψ̄𝐾
(
𝑖𝛾𝜇𝐷𝜇 − 𝑚as) Ψ𝐾 , (1)

where 𝑄 denotes the fermions transforming in the fundamental representation and Ψ those in
the antisymmetric one. We discretize the theory as described in Sect. 3. We perform lattice

1See Ref. [5] for a model in which this can be achieved with one species of fermions.
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measurements using gauge-invariant interpolating operators built with two fermions, transforming
in a single representation. We define

𝑂𝜂as (𝑥) ≡ 1
√
𝑁as

𝑁as∑︁
𝐾=1

Ψ̄𝐾 (𝑥)𝛾5Ψ
𝐾 (𝑥), 𝑂𝜂f (𝑥) ≡

1
√
𝑁f

𝑁f∑︁
𝐼=1

�̄�𝐼 (𝑥)𝛾5𝑄
𝐼 (𝑥) . (2)

From these operators we build a correlation matrix for the pseudoscalar flavour-singlet sector.
Diagrammatically, the correlation matrix has the following form

𝐶 (𝑥, 𝑦) =
(
⟨�̄�𝜂as𝑂𝜂as⟩ ⟨�̄�𝜂f𝑂𝜂as⟩
⟨�̄�𝜂as𝑂𝜂f ⟩ ⟨�̄�𝜂f𝑂𝜂f ⟩

)
=

©«
− x y

Ψ

Ψ

+ 𝑁as x yΨ Ψ

√
𝑁as𝑁f x yQ Ψ

√
𝑁as𝑁f x yQ Ψ − x y

Q

Q

+ 𝑁f x yQ Q

ª®®®¬ . (3)

We further enlarge the correlation matrix 𝐶 (𝑥, 𝑦) by including several layers of Wuppertal
smearing on the operators, as described in Ref. [25]. We extract the energy levels by performing
a variational analysis, within the context of a generalized eigenvalue problem (GEVP) defined by
projecting to the zero-momentum components, as 𝐶𝑖 𝑗 (𝑡 − 𝑡′) = ⟨�̄�𝑖 (𝑡, p = 0)𝑂 𝑗 (𝑡′, p = 0)⟩. The
eigenvalues, 𝜆𝑛 (𝑡, 𝑡0), and eigenvectors, 𝑣𝑛 (𝑡, 𝑡0), of 𝐶 (𝑡) are defined to obey the relations

𝐶 (𝑡)𝑣𝑛 (𝑡, 𝑡0) = 𝜆𝑛 (𝑡, 𝑡0)𝐶 (𝑡0)𝑣𝑛 (𝑡, 𝑡0). (4)

At large Euclidean times, the 𝑛th eigenvalue relates to the 𝑛th energy level in this channel, 𝐸𝑛, as

𝜆𝑛 (𝑡 → ∞, 𝑡0) = 𝐴0𝑒
−𝐸𝑛 (𝑡−𝑡0 ) . (5)

We fit the eigenvalues to a lattice-periodic fit function. The fit-interval is chosen by a visual
examination of the effective mass of the corresponding eigenvalue 𝜆𝑛 (𝑡, 𝑡0), with 𝑡0 fixed.

The determination of the mixing angle is based on Eq. (3), restricted to unsmeared opera-
tors [26]. The eigenvectors correspond to the matrix elements [51]:(

⟨0|𝑂𝜂f |𝜂′
𝑙
⟩ ⟨0|𝑂𝜂as |𝜂′

𝑙
⟩

⟨0|𝑂𝜂f |𝜂′
ℎ
⟩ ⟨0|𝑂𝜂as |𝜂′

ℎ
⟩

)
=

(
𝐴
𝜂′
𝑙

f 𝐴
𝜂′
𝑙

as

𝐴
𝜂′
ℎ

f 𝐴
𝜂′
ℎ

as

)
≡

(
𝐴𝜂′

𝑙
cos 𝜙𝜂′

𝑙
𝐴𝜂′

𝑙
sin 𝜙𝜂′

𝑙

−𝐴𝜂′
ℎ

sin 𝜙𝜂′
ℎ

𝐴𝜂′
ℎ

cos 𝜙𝜂′
ℎ

)
. (6)

In general, two mixing angles are needed to parameterize the matrix elements [52]. We test whether
the mixing could be described by a single mixing angle, 𝜙, by examining the following quantities

tan 𝜙𝜂′
𝑙
≡ 𝐴

𝜂′
𝑙

as

𝐴
𝜂′
𝑙

f

, − tan 𝜙𝜂′
ℎ
≡

𝐴
𝜂′
ℎ

f

𝐴
𝜂′
ℎ

as

, − tan2 𝜙 ≡
𝐴
𝜂′
ℎ

f 𝐴
𝜂′
𝑙

as

𝐴
𝜂′
ℎ

as 𝐴
𝜂′
𝑙

f

. (7)

If the system is parameterized by a single mixing angle, we should find 𝜙𝜂′
𝑙
≈ 𝜙𝜂′

ℎ
≈ 𝜙 [53]. For

this study, we ignore other possible contributions, for instance due to mixing with pseudoscalar
glueballs, or other excited states.
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Table 1: For each available ensemble, lattice parameters and masses extracted for the pseudoscalar singlet
states (𝜂′

𝑙
and 𝜂′

ℎ
) as well as the pseudoscalar non-singlets (PS and ps) and vector non-singlets (V and v).

Label 𝛽 𝑁𝑡 𝑁𝑙 𝑎𝑚f
0 𝑎𝑚as

0 𝑎𝑚𝜂′
𝑙

𝑎𝑚𝜂′
ℎ

𝑎𝑚PS 𝑎𝑚ps 𝑎𝑚V 𝑎𝑚v

M1 6.5 48 20 -0.71 -1.01 0.3769(96) 0.6334(59) 0.3639(14) 0.6001(11) 0.4030(33) 0.6452(18)
M2 6.5 64 20 -0.71 -1.01 0.3867(68) 0.619(13) 0.3648(13) 0.59856(82) 0.4038(17) 0.6421(15)
M3 6.5 96 20 -0.71 -1.01 0.3826(67) 0.588(12) 0.3652(16) 0.59940(79) 0.4040(18) 0.6467(21)
M4 6.5 64 20 -0.7 -1.01 0.4381(33) 0.6433(88) 0.4067(13) 0.62426(85) 0.4476(17) 0.6742(13)
M5 6.5 64 32 -0.72 -1.01 0.3591(53) 0.637(26) 0.31076(68) 0.57718(85) 0.3518(12) 0.6223(15)

3. Numerical Setup

Full details of the numerical simulation are provided in Refs. [25, 26]. We generate the gauge
configurations on GPU-based machines, using the Grid software environment [54–56], extended to
implement symplectic gauge theories [22]. We generate gauge configurations on a lattice volume
𝐿3 × 𝑇 = 𝑎4𝑁3

𝑠 × 𝑁𝑡 using the Wilson plaquette action and the standard Wilson discretization for
the fermions without the clover term. We restrict ourselves to a single lattice spacing (𝛽 = 6.5)
and keep the bare mass of the three antisymmetric fermions fixed at 𝑎𝑚as

0 = −1.01. We consider
three different values of the bare fundamental fermion mass, 𝑎𝑚f

0 = −0.70, −0.71, −0.72. For
𝑎𝑚f

0 = −0.71, we study three different temporal extensions 𝑁𝑡 = 48, 64, 90.
We measure correlation functions using the HiRep code [57–59], on CPU-based machines.

We implement both APE [60] and Wuppertal [61] smearings. APE smearing is performed with
smearing parameters 𝑁APE = 50 and 𝜖APE = 0.4. We use three different levels of Wuppertal
smearing for each fermion representation, characterized by 𝑁smear = 0, 40, 80 smearing steps,
respectively, with Wuppertal smearing parameters 𝜖 𝑓 = 0.2 and 𝜖𝑎𝑠 = 0.12 for the fundamental and
antisymmetric fermions. For the disconnected diagrams, we use 𝑛src = 64 stochastic sources.

The masses of all accessible flavour non-singlet states have been reported in Ref. [25]. We
denote the masses of the pseudoscalar mesons made of fundamental and antisymmetric fermions as
𝑚PS and 𝑚ps, respectively. Similarly, for vector mesons, 𝑚V and 𝑚v stand for the flavoured, vector
mesons. On a finite lattice, an additive constant contribution appears in the correlation function
for the pseudoscalars [62], that we subtract by performing a numerical derivative at the level of the
correlation matrix:

𝐶𝑖 𝑗 (𝑡) → �̃�𝑖 𝑗 (𝑡) =
𝐶𝑖 𝑗 (𝑡 − 1) − 𝐶𝑖 𝑗 (𝑡 + 1)

2
. (8)

All statistical uncertainties are determined using the jackknife method.

4. Results

We find plateaux with modest time extent, both in the ground state and the first excited state in
the pseudoscalar flavour-singlet sector. The signal is marginally better for the ground state. As a
consequence, we expect the first excited state to be affected by systematic uncertainties due to the
short plateaux. We perform fits over a minimum of four time slices. In Fig. 1, we show the effective
masses and the effective mixing angle for each of the five ensembles. The extracted energies are
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Figure 1: Effective mass (left) and effective average mixing angle (right) for each of the five ensembles.
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Label 𝛽 𝑁𝑡 𝑁𝑠 𝜙/◦ 𝜙𝜂′
𝑙
/◦ 𝜙𝜂′

ℎ
/◦

M1 6.5 48 20 6.15(83) 3.83(57) 9.8(1.1)
M2 6.5 64 20 6.07(63) 3.74(43) 9.78(89)
M3 6.5 96 20 6.16(66) 3.76(44) 10.00(92)
M4 6.5 64 20 7.44(58) 4.77(42) 12.26(86)
M5 6.5 64 32 6.61(54) 5.87(52) 7.67(64)

Table 2: Mixing angles according to Eq. (7), for each available ensemble
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Figure 2: Mass spectrum of light pseudoscalar and vector mesons. In the left panel we report the masses in
lattice units, 𝑎𝑚. In the right panel, the masses are expressed in units of the gradient flow scale, 𝑚𝑤0.

tabulated in Tab. 1. We include the lightest non-singlet masses as a reference value. We further
report all mixing angles, extracted according to Eq. (7), in Tab. 2.

We find that the masses of the 𝜂′
𝑙

and 𝜂′
ℎ

are close to those of the pseudoscalar and vector
mesons in the corresponding representations. This observation already suggests that these states
are dominated by a single fermion representation. This hint is supported by the small mixing angles
reported in Tab. 2. We also observe a large value of the ratio 𝑚PS/𝑚V close to unity, suggesting that
the parameter space explored in this study corresponds to comparatively large values of the mass
of the underlying hyperquarks (fermions). Indeed, we expect mixing effects to be dominated by the
disconnected-diagram contributions to the off-diagonal terms of Eq. (3), which are suppressed in
the presence of heavy fermions.

The results in Tab. 2 seem to suggest that the parametrization of Eq. (6) by a single mixing
angle be insufficient. While the overall angle is small throughout all ensembles, the difference
between mixing angles 𝜙𝜂′

𝑙
and 𝜙𝜂′

ℎ
is statistically significant. We empirically found that using a

comparatively large value of 𝑡0 in the GEVP method was advantageous in the determination of the
mixing angles. We have chosen 𝑡0 = 5 for this investigation.

We observe, in Fig. 2, that the masses of the mesons, expressed in lattice units, show some
decrease when decreasing the mass of the fundamental fermions, even though only a modest change
in 𝑚PS/𝑚V is observed. When plotting the fermion masses in units of the gradient flow scale, 𝑤0,
we observe that the masses of the 𝜂𝑙, PS, and V states decrease as a function of𝑚PS/𝑚V, whereas the
masses of the 𝜂ℎ, ps, and v are increasing. A more extended discussion, including our operational

6

https://orcid.org/0000-0002-8670-4054


Progress on pseudoscalar flavour-singlets in Sp(4) with mixed fermion representations Fabian Zierler

choices for the definition of the Wilson flow scale, 𝑤0, can be found in Refs. [25, 26].

5. Summary and outlook

We performed the first direct determination of flavour-singlet meson masses and their mixing
angles in a gauge theory with multiple fermion representations. The fermion masses are compar-
atively large, and as a consequence the mixing angle is small. The two singlet meson masses are
close to the pseudoscalar and vector flavoured meson masses, respectively. The composition of the
mass eigenstates is dominated by fermions of a single species.

Systematic uncertainties are probably sizeable, arising from noisy signal, short plateaux and
coarse lattices available. Yet, this investigation is a stepping stone towards further, more sophisti-
cated measurements. These include exploring lighter fermion masses, while combining the scalar
flavour-singlet meson channel with the glueball states.

In order to map out the physics of composite Higgs models, an obvious next step is to decrease
both the fundamental and antisymmetric fermion masses. Furthermore, the system should be
studied at different lattice spacings. This could be either achieved by increasing the inverse gauge
coupling, 𝛽, or by switching to a fermion action which has O(𝑎) improvement.
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