Journal article 154 views 23 downloads
Infiltration issues in printed mesoporous carbon perovskite solar cells: a troubleshooting guide
Journal of Materials Chemistry C, Volume: 12, Issue: 25, Pages: 9401 - 9411
Swansea University Authors: Carys Worsley, Tom Dunlop , Sarah-Jane Potts , Eifion Jewell , Trystan Watson
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution License 3.0 (CC-BY)
Download (5.29MB)
DOI (Published version): 10.1039/d4tc01157k
Abstract
Printed mesoscopic carbon perovskite solar cells (CPSCs) represent a potential frontrunner to perovskite commercialisation due to their inherent stability and easily scaled fabrication methods. Devices consist of three screen printed mesoporous layers of TiO2, ZrO2 and carbon, which are subsequently...
Published in: | Journal of Materials Chemistry C |
---|---|
ISSN: | 2050-7526 2050-7534 |
Published: |
Royal Society of Chemistry (RSC)
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa66928 |
Abstract: |
Printed mesoscopic carbon perovskite solar cells (CPSCs) represent a potential frontrunner to perovskite commercialisation due to their inherent stability and easily scaled fabrication methods. Devices consist of three screen printed mesoporous layers of TiO2, ZrO2 and carbon, which are subsequently infiltrated with perovskite. It is well established that complete infiltration, or filling, of the base TiO2 layer is key to achieving peak performance and reproducibility in both lab-scale devices and modules. A thorough understanding of the factors influencing infiltration is therefore essential for both lab-scale research and scale-up. TiO2 infiltration is easily examined by optical microscopy through the glass substrate. This work identifies common characteristic infiltration defects at multiple scales, caused by specific issues in the manufacturing process such as mesh marking, printing issues, contaminant damage and environmental fluctuations. Likely causes and potential solutions are presented for each type of defect, to produce a troubleshooting reference resource for tackling this problem at multiple scales. This should help enhance lab-scale reproducibility providing a simple method for quality control in future large-scale ventures. |
---|---|
College: |
Faculty of Science and Engineering |
Funders: |
This work was made possible by support from the Royal Society International Collaboration award (ICA\R1\191321) and the Newton Fund Impact Scheme (541128962). Additional support was received via the EPSRC Programme Grant ATIP (Application Targeted and Integrated Photovoltaics) (EP/T028513/1), Innovate UK(920036) andthe Prosperity Partnership (EP/X025217/1). Use and maintenance of the Zeiss Axio Observer was supported by the Advanced Imaging of Materials (AIM) core facility (EPSRC Grant No. EP/M028267/1), by the European Social Fund (ESF) through the European Union Convergence program administered by Welsh Government (80708), and a Welsh Government Enhanced Competitiveness Infrastructure Award. |
Issue: |
25 |
Start Page: |
9401 |
End Page: |
9411 |