No Cover Image

Journal article 74 views 2 downloads

A novel customer churn prediction model for the telecommunication industry using data transformation methods and feature selection

Joydeb Kumar Sana, Abedin Abedin, M. Sohel Rahman, M. Saifur Rahman Orcid Logo

PLOS ONE, Volume: 17, Issue: 12, Start page: e0278095

Swansea University Author: Abedin Abedin

  • 64261.VOR.pdf

    PDF | Version of Record

    © 2022 Sana et al. Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).

    Download (2.7MB)

Abstract

Customer churn is one of the most critical issues faced by the telecommunication industry (TCI). Researchers and analysts leverage customer relationship management (CRM) data through the use of various machine learning models and data transformation methods to identify the customers who are likely t...

Full description

Published in: PLOS ONE
ISSN: 1932-6203
Published: Public Library of Science (PLoS) 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa64261
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Customer churn is one of the most critical issues faced by the telecommunication industry (TCI). Researchers and analysts leverage customer relationship management (CRM) data through the use of various machine learning models and data transformation methods to identify the customers who are likely to churn. While several studies have been conducted in the customer churn prediction (CCP) context in TCI, a review of performance of the various models stemming from these studies show a clear room for improvement. Therefore, to improve the accuracy of customer churn prediction in the telecommunication industry, we have investigated several machine learning models, as well as, data transformation methods. To optimize the prediction models, feature selection has been performed using univariate technique and the best hyperparameters have been selected using the grid search method. Subsequently, experiments have been conducted on several publicly available TCI datasets to assess the performance of our models in terms of the widely used evaluation metrics, such as AUC, precision, recall, and F-measure. Through a rigorous experimental study, we have demonstrated the benefit of applying data transformation methods as well as feature selection while training an optimized CCP model. Our proposed technique improved the prediction performance by up to 26.2% and 17% in terms of AUC and F-measure, respectively.
Keywords: Customer churn, telecommunication industry, customer relationship management
College: Faculty of Humanities and Social Sciences
Issue: 12
Start Page: e0278095