Journal article 430 views 65 downloads
Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance
Microbial Genomics, Volume: 8, Issue: 6
Swansea University Authors: Ben Pascoe , Matthew Hitchings
-
PDF | Version of Record
© 2022 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Download (4.26MB)
DOI (Published version): 10.1099/mgen.0.000834
Abstract
Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited...
Published in: | Microbial Genomics |
---|---|
ISSN: | 2057-5858 |
Published: |
Microbiology Society
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa63742 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2023-07-12T13:37:31Z |
---|---|
last_indexed |
2023-07-12T13:37:31Z |
id |
cronfa63742 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>63742</id><entry>2023-06-28</entry><title>Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance</title><swanseaauthors><author><sid>4660c0eb7e6bfd796cd749ae713ea558</sid><ORCID>0000-0001-6376-5121</ORCID><firstname>Ben</firstname><surname>Pascoe</surname><name>Ben Pascoe</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>be98847c72c14a731c4a6b7bc02b3bcf</sid><ORCID>0000-0002-5527-4709</ORCID><firstname>Matthew</firstname><surname>Hitchings</surname><name>Matthew Hitchings</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-06-28</date><deptcode>PMSC</deptcode><abstract>Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory-genome content of a collection of Campylobacter isolates from the Cairo metropolitan area, Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24), and patients suffering from gastroenteritis (n=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST-21 clonal complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented, with a total absence of CC61. Core- and accessory-genome sharing was compared among isolates from Egypt and a comparable collection from the UK (Oxford). Lineage-specific accessory-genome sharing was significantly higher among isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. A greater proportion of Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni. Our results suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for controlling the spread of antimicrobial resistance among this important pathogen.</abstract><type>Journal Article</type><journal>Microbial Genomics</journal><volume>8</volume><journalNumber>6</journalNumber><paginationStart/><paginationEnd/><publisher>Microbiology Society</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2057-5858</issnElectronic><keywords>Accessory genome, antimicrobial resistance, Campylobacter, population structure</keywords><publishedDay>8</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-06-08</publishedDate><doi>10.1099/mgen.0.000834</doi><url>http://dx.doi.org/10.1099/mgen.0.000834</url><notes/><college>COLLEGE NANME</college><department>Medicine</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>PMSC</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>This study was partially funded by Zewail City internal research grant fund (ZC 004-2019) and joint ASRT/BA research grant (project number 1110) awarded to M.E. We would like to thank the British Academy of Medical Sciences for funding the research stay of M.E. at the Milner Centre of Evolution,
University of Bath, through a Daniel Turnberg Travel Fellowship. Research and computation were performed on MRC CLIMB, supported by the Medical Research Council (MR/L015080/1 and MR/T030062/1). S.K.S. has received support from the Wellcome Trust (088786/C/09/Z) and the Biotechnology and Biological Sciences Research Council (BB/I02464X/1 and BB/R003491/1). B.P. is funded by the Medical Research Council (MR/V001213/1) and National Institute of Health (1R01AI158576-01).</funders><projectreference/><lastEdited>2024-03-05T09:46:35.6135274</lastEdited><Created>2023-06-28T15:37:35.4726035</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Shaimaa F.</firstname><surname>Mouftah</surname><orcid>0000-0002-4143-509x</orcid><order>1</order></author><author><firstname>Ben</firstname><surname>Pascoe</surname><orcid>0000-0001-6376-5121</orcid><order>2</order></author><author><firstname>Jessica K.</firstname><surname>Calland</surname><orcid>0000-0001-8888-0812</orcid><order>3</order></author><author><firstname>Evangelos</firstname><surname>Mourkas</surname><orcid>0000-0002-7411-4743</orcid><order>4</order></author><author><firstname>Naomi</firstname><surname>Tonkin</surname><order>5</order></author><author><firstname>Charlotte</firstname><surname>Lefevre</surname><orcid>0000-0002-0762-7223</orcid><order>6</order></author><author><firstname>Danielle</firstname><surname>Deuker</surname><order>7</order></author><author><firstname>Sunny</firstname><surname>Smith</surname><order>8</order></author><author><firstname>Harry</firstname><surname>Wickenden</surname><order>9</order></author><author><firstname>Matthew</firstname><surname>Hitchings</surname><orcid>0000-0002-5527-4709</orcid><order>10</order></author><author><firstname>Samuel K.</firstname><surname>Sheppard</surname><orcid>0000-0001-6901-3203</orcid><order>11</order></author><author><firstname>Mohamed</firstname><surname>Elhadidy</surname><orcid>0000-0002-6153-1302</orcid><order>12</order></author></authors><documents><document><filename>63742__28096__51c1ec7a6e034fb58d3b2273526aab25.pdf</filename><originalFilename>63742.pdf</originalFilename><uploaded>2023-07-12T14:36:34.6114786</uploaded><type>Output</type><contentLength>4465697</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2022 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.ast</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 63742 2023-06-28 Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance 4660c0eb7e6bfd796cd749ae713ea558 0000-0001-6376-5121 Ben Pascoe Ben Pascoe true false be98847c72c14a731c4a6b7bc02b3bcf 0000-0002-5527-4709 Matthew Hitchings Matthew Hitchings true false 2023-06-28 PMSC Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory-genome content of a collection of Campylobacter isolates from the Cairo metropolitan area, Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24), and patients suffering from gastroenteritis (n=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST-21 clonal complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented, with a total absence of CC61. Core- and accessory-genome sharing was compared among isolates from Egypt and a comparable collection from the UK (Oxford). Lineage-specific accessory-genome sharing was significantly higher among isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. A greater proportion of Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni. Our results suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for controlling the spread of antimicrobial resistance among this important pathogen. Journal Article Microbial Genomics 8 6 Microbiology Society 2057-5858 Accessory genome, antimicrobial resistance, Campylobacter, population structure 8 6 2022 2022-06-08 10.1099/mgen.0.000834 http://dx.doi.org/10.1099/mgen.0.000834 COLLEGE NANME Medicine COLLEGE CODE PMSC Swansea University Another institution paid the OA fee This study was partially funded by Zewail City internal research grant fund (ZC 004-2019) and joint ASRT/BA research grant (project number 1110) awarded to M.E. We would like to thank the British Academy of Medical Sciences for funding the research stay of M.E. at the Milner Centre of Evolution, University of Bath, through a Daniel Turnberg Travel Fellowship. Research and computation were performed on MRC CLIMB, supported by the Medical Research Council (MR/L015080/1 and MR/T030062/1). S.K.S. has received support from the Wellcome Trust (088786/C/09/Z) and the Biotechnology and Biological Sciences Research Council (BB/I02464X/1 and BB/R003491/1). B.P. is funded by the Medical Research Council (MR/V001213/1) and National Institute of Health (1R01AI158576-01). 2024-03-05T09:46:35.6135274 2023-06-28T15:37:35.4726035 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Shaimaa F. Mouftah 0000-0002-4143-509x 1 Ben Pascoe 0000-0001-6376-5121 2 Jessica K. Calland 0000-0001-8888-0812 3 Evangelos Mourkas 0000-0002-7411-4743 4 Naomi Tonkin 5 Charlotte Lefevre 0000-0002-0762-7223 6 Danielle Deuker 7 Sunny Smith 8 Harry Wickenden 9 Matthew Hitchings 0000-0002-5527-4709 10 Samuel K. Sheppard 0000-0001-6901-3203 11 Mohamed Elhadidy 0000-0002-6153-1302 12 63742__28096__51c1ec7a6e034fb58d3b2273526aab25.pdf 63742.pdf 2023-07-12T14:36:34.6114786 Output 4465697 application/pdf Version of Record true © 2022 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution. true eng https://creativecommons.org/licenses/by/4.0/deed.ast |
title |
Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance |
spellingShingle |
Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance Ben Pascoe Matthew Hitchings |
title_short |
Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance |
title_full |
Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance |
title_fullStr |
Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance |
title_full_unstemmed |
Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance |
title_sort |
Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance |
author_id_str_mv |
4660c0eb7e6bfd796cd749ae713ea558 be98847c72c14a731c4a6b7bc02b3bcf |
author_id_fullname_str_mv |
4660c0eb7e6bfd796cd749ae713ea558_***_Ben Pascoe be98847c72c14a731c4a6b7bc02b3bcf_***_Matthew Hitchings |
author |
Ben Pascoe Matthew Hitchings |
author2 |
Shaimaa F. Mouftah Ben Pascoe Jessica K. Calland Evangelos Mourkas Naomi Tonkin Charlotte Lefevre Danielle Deuker Sunny Smith Harry Wickenden Matthew Hitchings Samuel K. Sheppard Mohamed Elhadidy |
format |
Journal article |
container_title |
Microbial Genomics |
container_volume |
8 |
container_issue |
6 |
publishDate |
2022 |
institution |
Swansea University |
issn |
2057-5858 |
doi_str_mv |
10.1099/mgen.0.000834 |
publisher |
Microbiology Society |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
url |
http://dx.doi.org/10.1099/mgen.0.000834 |
document_store_str |
1 |
active_str |
0 |
description |
Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory-genome content of a collection of Campylobacter isolates from the Cairo metropolitan area, Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24), and patients suffering from gastroenteritis (n=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST-21 clonal complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented, with a total absence of CC61. Core- and accessory-genome sharing was compared among isolates from Egypt and a comparable collection from the UK (Oxford). Lineage-specific accessory-genome sharing was significantly higher among isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. A greater proportion of Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni. Our results suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for controlling the spread of antimicrobial resistance among this important pathogen. |
published_date |
2022-06-08T09:46:34Z |
_version_ |
1792679078321455104 |
score |
11.037581 |