No Cover Image

Journal article 431 views 68 downloads

Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance

Shaimaa F. Mouftah Orcid Logo, Ben Pascoe Orcid Logo, Jessica K. Calland Orcid Logo, Evangelos Mourkas Orcid Logo, Naomi Tonkin, Charlotte Lefevre Orcid Logo, Danielle Deuker, Sunny Smith, Harry Wickenden, Matthew Hitchings Orcid Logo, Samuel K. Sheppard Orcid Logo, Mohamed Elhadidy Orcid Logo

Microbial Genomics, Volume: 8, Issue: 6

Swansea University Authors: Ben Pascoe Orcid Logo, Matthew Hitchings Orcid Logo

  • 63742.pdf

    PDF | Version of Record

    © 2022 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.

    Download (4.26MB)

Check full text

DOI (Published version): 10.1099/mgen.0.000834

Abstract

Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited...

Full description

Published in: Microbial Genomics
ISSN: 2057-5858
Published: Microbiology Society 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa63742
Abstract: Campylobacter is the most common cause of bacterial gastroenteritis worldwide, and diarrhoeal disease is a major cause of child morbidity, growth faltering and mortality in low- and middle-income countries. Despite evidence of high incidence and differences in disease epidemiology, there is limited genomic data from studies in developing countries. In this study, we aimed to quantify the extent of gene sharing in local and global populations. We characterized the genetic diversity and accessory-genome content of a collection of Campylobacter isolates from the Cairo metropolitan area, Egypt. In total, 112 Campylobacter isolates were collected from broiler carcasses (n=31), milk and dairy products (n=24), and patients suffering from gastroenteritis (n=57). Among the most common sequence types (STs), we identified the globally disseminated host generalist ST-21 clonal complex (CC21) and the poultry specialists CC206, CC464 and CC48. Notably, CC45 and the cattle-specialist CC42 were under-represented, with a total absence of CC61. Core- and accessory-genome sharing was compared among isolates from Egypt and a comparable collection from the UK (Oxford). Lineage-specific accessory-genome sharing was significantly higher among isolates from the same country, particularly CC21, which demonstrated greater local geographical clustering. In contrast, no geographical clustering was noted in either the core or accessory genome of CC828, suggesting a highly admixed population. A greater proportion of Campylobacter coli isolates were multidrug resistant compared to Campylobacter jejuni. Our results suggest that there is more horizontal transfer of accessory genes between strains in Egypt. This has strong implications for controlling the spread of antimicrobial resistance among this important pathogen.
Keywords: Accessory genome, antimicrobial resistance, Campylobacter, population structure
College: Faculty of Medicine, Health and Life Sciences
Funders: This study was partially funded by Zewail City internal research grant fund (ZC 004-2019) and joint ASRT/BA research grant (project number 1110) awarded to M.E. We would like to thank the British Academy of Medical Sciences for funding the research stay of M.E. at the Milner Centre of Evolution, University of Bath, through a Daniel Turnberg Travel Fellowship. Research and computation were performed on MRC CLIMB, supported by the Medical Research Council (MR/L015080/1 and MR/T030062/1). S.K.S. has received support from the Wellcome Trust (088786/C/09/Z) and the Biotechnology and Biological Sciences Research Council (BB/I02464X/1 and BB/R003491/1). B.P. is funded by the Medical Research Council (MR/V001213/1) and National Institute of Health (1R01AI158576-01).
Issue: 6