No Cover Image

Journal article 738 views 64 downloads

Fungal oxylipins direct programmed developmental switches in filamentous fungi

Mengyao Niu, Breanne N. Steffan, Gregory J. Fischer, Nandhitha Venkatesh, Nicholas L. Raffa, Molly A. Wettstein, Jin Woo Bok, Claudio Greco Orcid Logo, Can Zhao, Erwin Berthier, Ernst Oliw, David Beebe Orcid Logo, Michael Bromley Orcid Logo, Nancy P. Keller Orcid Logo

Nature Communications, Volume: 11, Issue: 1

Swansea University Author: Claudio Greco Orcid Logo

  • 61518_VoR.pdf

    PDF | Version of Record

    © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (1.94MB)

Abstract

Filamentous fungi differentiate along complex developmental programs directed by abiotic and biotic signals. Currently, intrinsic signals that govern fungal development remain largely unknown. Here we show that an endogenously produced and secreted fungal oxylipin, 5,8-diHODE, induces fungal cellula...

Full description

Published in: Nature Communications
ISSN: 2041-1723
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61518
Abstract: Filamentous fungi differentiate along complex developmental programs directed by abiotic and biotic signals. Currently, intrinsic signals that govern fungal development remain largely unknown. Here we show that an endogenously produced and secreted fungal oxylipin, 5,8-diHODE, induces fungal cellular differentiation, including lateral branching in pathogenic Aspergillus fumigatus and Aspergillus flavus, and appressorium formation in the rice blast pathogen Magnaporthe grisea. The Aspergillus branching response is specific to a subset of oxylipins and is signaled through G-protein coupled receptors. RNA-Seq profiling shows differential expression of many transcription factors in response to 5,8-diHODE. Screening of null mutants of 33 of those transcription factors identifies three transcriptional regulators that appear to mediate the Aspergillus branching response; one of the mutants is locked in a hypo-branching phenotype, while the other two mutants display a hyper-branching phenotype. Our work reveals an endogenous signal that triggers crucial developmental processes in filamentous fungi, and opens new avenues for research on the morphogenesis of filamentous fungi.
College: Faculty of Science and Engineering
Funders: This study was funded in part by the National Institutes of Health R01 AI065728-01 and GM112739-02 to N.P.K., a Predoctoral Training Program in Genetics award for GF (5T32GM07133), NIH T32 ES007015 to B.N.S., and a Wellcome Trust grant 208396/Z/17/Z to M.B.
Issue: 1