E-Thesis 457 views 206 downloads
Enhanced Realizability Interpretation for Program Extraction / Olga Petrovska; OLGA PETROVSKA
Swansea University Authors: Olga Petrovska, OLGA PETROVSKA
DOI (Published version): 10.23889/SUthesis.57831
Abstract
This thesis presents Intuitionistic Fixed Point Logic (IFP), a schema for formal systems aimed to work with program extraction from proofs. IFP in its basic form allows proof construction based on natural deduction inference rules, extended by induction and coinduction. The corresponding system RIFP...
Published: |
Swansea
2021
|
---|---|
Institution: | Swansea University |
Degree level: | Doctoral |
Degree name: | Ph.D |
Supervisor: | Berger, Ulrich |
URI: | https://cronfa.swan.ac.uk/Record/cronfa57831 |
first_indexed |
2021-09-09T15:08:40Z |
---|---|
last_indexed |
2021-09-10T03:20:38Z |
id |
cronfa57831 |
recordtype |
RisThesis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-09-09T16:46:04.7156349</datestamp><bib-version>v2</bib-version><id>57831</id><entry>2021-09-09</entry><title>Enhanced Realizability Interpretation for Program Extraction</title><swanseaauthors><author><sid>3f0bf84d3c8d15113f3f0da0aab6b783</sid><ORCID>0000-0003-1170-8816</ORCID><firstname>Olga</firstname><surname>Petrovska</surname><name>Olga Petrovska</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>5edcfa07b18b9f21b539e727881e7255</sid><firstname>OLGA</firstname><surname>PETROVSKA</surname><name>OLGA PETROVSKA</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-09-09</date><deptcode>MACS</deptcode><abstract>This thesis presents Intuitionistic Fixed Point Logic (IFP), a schema for formal systems aimed to work with program extraction from proofs. IFP in its basic form allows proof construction based on natural deduction inference rules, extended by induction and coinduction. The corresponding system RIFP (IFP with realiz-ers) enables transforming logical proofs into programs utilizing the enhanced re-alizability interpretation. The theoretical research is put into practice in PRAWF1, a Haskell-based proof assistant for program extraction.</abstract><type>E-Thesis</type><journal/><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication>Swansea</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords>computer science, logic, program extraction, intuitionistic logic</keywords><publishedDay>9</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-09-09</publishedDate><doi>10.23889/SUthesis.57831</doi><url/><notes>ORCiD identifier https://orcid.org/0000-0003-1170-8816</notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><supervisor>Berger, Ulrich</supervisor><degreelevel>Doctoral</degreelevel><degreename>Ph.D</degreename><degreesponsorsfunders>EPSRC, EPSRC Doctoral Training Grant No. 1818640</degreesponsorsfunders><apcterm/><lastEdited>2021-09-09T16:46:04.7156349</lastEdited><Created>2021-09-09T16:06:01.1028598</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Olga</firstname><surname>Petrovska</surname><orcid>0000-0003-1170-8816</orcid><order>1</order></author><author><firstname>OLGA</firstname><surname>PETROVSKA</surname><order>2</order></author></authors><documents><document><filename>57831__20809__0d6a393dd355438ebbe4113e6e9aff2c.pdf</filename><originalFilename>Petrovska_Olga_PhD_Thesis_Final_Redacted_Signature.pdf</originalFilename><uploaded>2021-09-09T16:33:38.5771809</uploaded><type>Output</type><contentLength>856552</contentLength><contentType>application/pdf</contentType><version>E-Thesis – open access</version><cronfaStatus>true</cronfaStatus><documentNotes>Copyright: The author, Olga Petrovska, 2021.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-09-09T16:46:04.7156349 v2 57831 2021-09-09 Enhanced Realizability Interpretation for Program Extraction 3f0bf84d3c8d15113f3f0da0aab6b783 0000-0003-1170-8816 Olga Petrovska Olga Petrovska true false 5edcfa07b18b9f21b539e727881e7255 OLGA PETROVSKA OLGA PETROVSKA true false 2021-09-09 MACS This thesis presents Intuitionistic Fixed Point Logic (IFP), a schema for formal systems aimed to work with program extraction from proofs. IFP in its basic form allows proof construction based on natural deduction inference rules, extended by induction and coinduction. The corresponding system RIFP (IFP with realiz-ers) enables transforming logical proofs into programs utilizing the enhanced re-alizability interpretation. The theoretical research is put into practice in PRAWF1, a Haskell-based proof assistant for program extraction. E-Thesis Swansea computer science, logic, program extraction, intuitionistic logic 9 9 2021 2021-09-09 10.23889/SUthesis.57831 ORCiD identifier https://orcid.org/0000-0003-1170-8816 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Berger, Ulrich Doctoral Ph.D EPSRC, EPSRC Doctoral Training Grant No. 1818640 2021-09-09T16:46:04.7156349 2021-09-09T16:06:01.1028598 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Olga Petrovska 0000-0003-1170-8816 1 OLGA PETROVSKA 2 57831__20809__0d6a393dd355438ebbe4113e6e9aff2c.pdf Petrovska_Olga_PhD_Thesis_Final_Redacted_Signature.pdf 2021-09-09T16:33:38.5771809 Output 856552 application/pdf E-Thesis – open access true Copyright: The author, Olga Petrovska, 2021. true eng |
title |
Enhanced Realizability Interpretation for Program Extraction |
spellingShingle |
Enhanced Realizability Interpretation for Program Extraction Olga Petrovska OLGA PETROVSKA |
title_short |
Enhanced Realizability Interpretation for Program Extraction |
title_full |
Enhanced Realizability Interpretation for Program Extraction |
title_fullStr |
Enhanced Realizability Interpretation for Program Extraction |
title_full_unstemmed |
Enhanced Realizability Interpretation for Program Extraction |
title_sort |
Enhanced Realizability Interpretation for Program Extraction |
author_id_str_mv |
3f0bf84d3c8d15113f3f0da0aab6b783 5edcfa07b18b9f21b539e727881e7255 |
author_id_fullname_str_mv |
3f0bf84d3c8d15113f3f0da0aab6b783_***_Olga Petrovska 5edcfa07b18b9f21b539e727881e7255_***_OLGA PETROVSKA |
author |
Olga Petrovska OLGA PETROVSKA |
author2 |
Olga Petrovska OLGA PETROVSKA |
format |
E-Thesis |
publishDate |
2021 |
institution |
Swansea University |
doi_str_mv |
10.23889/SUthesis.57831 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
This thesis presents Intuitionistic Fixed Point Logic (IFP), a schema for formal systems aimed to work with program extraction from proofs. IFP in its basic form allows proof construction based on natural deduction inference rules, extended by induction and coinduction. The corresponding system RIFP (IFP with realiz-ers) enables transforming logical proofs into programs utilizing the enhanced re-alizability interpretation. The theoretical research is put into practice in PRAWF1, a Haskell-based proof assistant for program extraction. |
published_date |
2021-09-09T20:04:51Z |
_version_ |
1821346618493894656 |
score |
11.04748 |