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Abstract

This thesis presents Intuitionistic Fixed Point Logic (IFP), a schema for formal
systems aimed to work with program extraction from proofs. IFP in its basic form
allows proof construction based on natural deduction inference rules, extended
by induction and coinduction. The corresponding system RIFP (IFP with realiz-
ers) enables transforming logical proofs into programs utilizing the enhanced re-
alizability interpretation. The theoretical research is put into practice in PRAWF1,
a Haskell-based proof assistant for program extraction.

1pronounced /prau
“
v/, Welsh for ‘Proof’
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Chapter 1

Introduction

Contents
Related papers and talks . . . . . . . . . . . . . . . . . . . . . . . . . 2

Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Logic in computer science has a multitude of applications. For instance, it can be
used in modelling better circuits, characterising complexity classes, or describing
processes. The focus of this thesis is on applications centred around the notion of
a formal logical proof as a “string of symbols, which satisfy some precisely stated
set of rules and which prove a theorem, which itself must also be expressed as a
string of symbols” [56].

Proofs are used in computer science in three fundamentally different ways.
Firstly, in program verification proofs are regarded as certificates for the cor-
rectness of programs. Secondly, proof search is used as a computation model
in logic programming, for example in languages like Prolog or λProlog. Lastly,
the Curry-Howard isomorphism allows us to interpret proofs as programs. This
thesis focuses on the third one, within which we distinguish (a) the approach
used in constructive type theory, where proof normalisation or cut-elimination of
proofs is used for direct computation [7, 8, 9] and (b) program extraction, which
can be based on (i) functional interpretation, (ii) realizability for intuitionistic
systems, and (iii) realizability for classical systems

The core of functional interpretation, based on Kurt Gödel’s Dialectica inter-
pretation [59], lies in the reduction of the classical theory to its intuitionistic
variant and then further into a quantifier-free theory of functionals of finite type.
Gödel’s original use of functional interpretation was to provide a consistency
proof for Peano arithmetic. Functional interpretation enables extracting con-
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structive content from proofs in the intuitionistic and classical theories. It is of
interest to many scholars, including Jeremy Avigad, Solomon Feferman, Ulrich
Kohlenbach, Paulo Oliva, Helmut Schwichtenberg, Henry Towsner, and others
[5, 6, 73, 92, 93, 107, 119].

The second trend – program extraction through realiziability interpretation
(for intuitionistic systems) – is at the core of this thesis. Realizability has its
roots in the Brouwer-Heyting-Kolmogorov (BHK) interpretation and is usually
associated with the names of Stephen Kleene and Georg Kreisel. Anne Troelstra
was among the scholars exploring the connection between intuitionistic logical
operators and realizability [43]. His work inspired his student, Jaap van Oosten
to write a historic essay on realizability that serves as a good introduction into
this field [94]. In this thesis we define an enhanced realizability interpretation,
based on Kleene’s version, which allows obtaining realizers from proofs that in-
clude induction and coinduction. The inspiration to use this particular approach
comes from consideration of the theory behind the Minlog proof assistant [118].
This proof assistant is based on Kreisel’s modified realizability [74]. In this the-
sis, we explore how using a different approach to realizability of induction and
coinduction impacts the process of program extraction.

Within the “proofs as programs” paradigm restricting proofs to intuitionistic
ones due to their constructive nature was common. Michael Parigot believed
such a restriction was too strict because “from the programming point of view,
constructivity is only needed for ∑

0
1-statements, for which classical and intu-

itionistic provability coincide” [96]. In this respect, classical proofs may also
be considered to be programs as long as there is a system in which a program
can be extracted directly from a classical proof, as opposed to translation of
classical proofs into intuitionistic ones, and when there is an understanding of
“the algorithmic meaning of classical constructions” [96]. His λ µ-calculus en-
abled him to extend the concept of “proofs as programs” to work with classical
proofs. Besides Parigot, also Jean-Louis Krivine introduced realizability for clas-
sical logic [75, 76, 77]. Parigot’s and Krivine’s approaches are both connected
with Kleene/Kreisel realizability through Gödel’s negative translation (embed-
ding Peano arithmetic into Heyting arithmetic).

Publications and talks

The following papers are published versions of some of the materials presented
in this thesis. They also contain some additional details related to this research.

Optimized Program Extraction for Induction and Coinduction [21] (by U. Berger
and O. Petrovska) This paper presents the first variant of the Intuitionistic Fixed
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Point logic (IFP), a formal system that serves as a base for program extraction.
The paper also includes the proof of the Soundness Theorem, which is subject to
a special admissibility condition. The updated version of the Soundness Theo-
rem presented in this thesis, however, has the mentioned admissibility condition
removed.

The paper presents a carefully crafted realizability interpretation based on
the distinction between non-Harrop and Harrop formulas, where the latter ones
are treated in a special manner. Program extraction based on this realizability
interpretation is optimized as the programs that we get are simpler and do not in-
clude irrelevant non-computational content. Such optimization, however, comes
at a price. The soundness proof becomes more involved and rigorous. Sound-
ness would be easy if there would be no distinction between Harrop/non-Harrop
expressions, which will be presented in section 9.4. However, then we would get
wasteful programs with unnecessarily complex data types. For instance, a con-
dition for integer division is that one cannot divide by 0. To extract an integer
division program, we need to have a proof that employs an axiom, which states
that the divisor must be nonzero. All axioms used in proofs are required to be
Harrop and, as such, they bear no computational content. If there would be no
distinction between Harrop and non-Harrop, then the extracted program would
not only take dividend and divisor as its arguments, it would also require a proof
that the dividend is not a zero to be executed successfully.

Additionally, this paper shows that well-founded induction is an instance
of strictly positive induction. This enables us to derive a new computationally
meaningful formulation of the Archimedean property for real numbers. Through
an example of program extraction in computable analysis this paper illustrates
that Archimedean induction can be used to eliminate countable choice. These
materials and related research were presented at the Computability in Europe
(CiE) conference in Kiel, Germany as well as at the Continuity, Computability,
Constructivity (CCC) workshop in Faro, Portugal in 2018. The paper was pub-
lished in the LNCS proceedings of the CiE 2018.

PRAWF: An Interactive Proof System for Program Extraction [22] (by U. Berger,
O. Petrovska, H. Tsuiki) This paper presents an interactive proof system dedi-
cated to program extraction from proofs. The implementation uses an updated
version of IFP presented in [24]. This paper gives an overview of the prototype
implementation and explains its use through several case studies. An example
of conversion between different versions of exact real numbers representation
utilizes Archimedean induction as presented in our previous paper. The proof
assistant benefits from an improvement of the theory, namely introduction of an
intermediate system IFP’. This enables extraction of programs from proofs avoid-
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ing the admissibility condition, allowing proofs that use unrestricted strictly pos-
itive inductive and coinductive definitions. This improvement was introduced
[24], where the corresponding soundness proof was outlined. The present thesis
includes a proof of this Soundness Theorem worked out in detail. An overview
of this paper and the new soundness proof were presented via Zoom at the 36th
British Colloquium for Theoretical Computer Science (BCTCS) in Swansea, UK
as well as at the CiE conference in Fisciano, Italy in 2020. The paper was pub-
lished in the proceedings of the conference.

Main contributions

The following is a brief summary of the main contributions.

Proof of soundness. When a new logical system is introduced one needs to
ensure that it is sound. Therefore, our first paper briefly describes the Sound-
ness Theorem, connecting the proofs in IFP with their counterparts in RIFP. The
most complicated part of the soundness proof were the cases for induction and
coinduction. They turned out to be more complex than initially anticipated. Due
to the distinction between non-Harrop formulas, which have computational con-
tent, and Harrop formulas, which do not, certain (admissibility) restrictions had
to be put in place in order to be able to complete the soundness proof. The
restrictions were not severe as in all practical applications proofs turned out to
be admissible. However, to be completely confident that no cases were omit-
ted, the aim was to find an alternative approach that would allow lifting this
restriction. Fortunately, whilst working on [24], Hideki Tsuiki discovered the
workaround through introduction of the intermediary system IFP’. This system
is an exact copy of the original IFP with the (co)induction rules redefined. In
IFP’ the premise of (co)induction includes an additional proof of monotonicity
of the relevant operator. Taking this into account, the Soundness Theorem has
been redefined and instead of IFP it uses the link between IFP’ and RIFP. The
initial soundness proof was drafted by the authors in [24], although it was not
worked out in detail. After the paper was released to the public, I verified that
the Soundness Theorem in this new formulation works. The detailed proof is
included in this thesis.

Alternative approach to small-step semantics. Operational semantics used in
the previous research of Ulrich Berger related to IFP usually relied on the notion
of closures. A closure is a pair, consisting of a program and a corresponding en-
vironment. The use of closures in operational semantics enables us to transform
and evaluate a program easily, keeping track of the environment details, whilst

4



avoiding unnecessary intermediate substitutions. Whilst working on the imple-
mentation of operational semantics in PRAWF I discovered that the small-step
semantics defined in the initial version of [24] had an issue. Specifically, the use
of the inference rules could lead to potential loss of parts of the context in the
process of evaluation. Therefore, in the released version of the paper the authors
opted for inference rules that used substitution instead of closures. While that
works from a theoretical point of view, in practice this approach is not as efficient
as the approach with closures. Therefore, after reviewing the drawbacks in the
initial definitions, I introduced the notion of an extended closure to solve the prob-
lem with the context inaccuracy. The big-step semantics remained unchanged,
whilst the small-step inference rules were extended. The interchangeability be-
tween the big-step and small-step inference rules was proven.

PRAWF implementation. PRAWF is based on the proof assistant for proposi-
tional logic that I developed as a part of my MSc degree. The initial system
allowed working with the basic natural deduction rules for first-order logic. The
proof assistant was then extended with the new rules for induction, coinduc-
tion, (co)closure, as well as equivalence rules. New concepts of a language, a
declaration and an axiom were introduced in this updated system. The notions
of a predicate and a formula were extended and a new data type of operators
was introduced. Aside from the purely logical aspect, the machinery for extract-
ing programs from proofs and working with them was added. This included
introduction of the notion of a program and implementation of realizability in-
terpretation and operational semantics. The implementation was carried out
alongside the development of the IFP as a theoretical system. Hence, PRAWF was
constantly modified to match the theory, whilst the development of the theory
benefited from the practical findings encountered during the implementation.
The current version of PRAWF allows constructing proofs in IFP and extracting
executable programs from them. From the usability perspective it may not be ro-
bust enough, considering that the theorem base is small, but the tool is sufficient
enough to show that IFP does work in practice.

Structure of the thesis

This thesis consists of four parts.

The first part presents the theoretical and historical background for the given
research. We begin with the introduction of constructivism and give an overview
of its various trends, including Brouwer’s intuitionism, Recursive constructive
mathematics, Bishop’s constructive mathematics, and Intuitionistic type theory.
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Then we proceed to present realizability as the underlying concept in program
extraction and draw specific attention to the realizability of induction and coin-
duction. To present the idea of computability, the following chapter outlines
lambda calculus and its extension, simply typed lambda calculus. This is fol-
lowed by an overview of domain theory and a chapter on various approaches
to semantics, including operational, axiomatic, and denotational. The section
on Harrop formulas presents them as a tool for separating useful computational
content from computationally irrelevant content. The final chapter of this part
gives a brief overview of program extraction in some of the most popular proof
systems.

The second part presents the formal system for program extraction, called
Intuitionistic Fixed Point logic (IFP). IFP is a base and an umbrella term for a
number of formal systems (extensions of IFP), which are used for program ex-
traction. We describe the logical system of IFP, its extension IFP’, and, finally,
RIFP, a version of IFP that includes realizers. Following this, the realizability
interpretation for IFP is introduced. The subsequent chapter contains a detailed
proof of the Soundness Theorem. The final chapter introduces the relevant op-
erational semantics and includes an adjusted proof of the adequacy theorem,
linking denotational and operational semantics.

The third part describes the development of the PRAWF system, highlighting
the underlying structure, the main notions and their corresponding data types.
It describes a number of small case studies based on proofs involving induction
and coinduction. These case studies include walks-through from a proof to an
extracted program and its execution. Although the examples are small, they are
appropriately simple to present how programs are extracted at a reasonable level
of detail. A more complex case study was done by Tsuiki and it is presented in
[22].

The fourth part concludes this thesis, giving an overview of my PhD journey
and an overall summary of the conducted research. It also describes the areas
that can be explored and improved upon in the future.
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Part I

Theoretical and historical
background
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Chapter 2

Constructivism

Contents
2.1 Brouwer’s intuitionism and its development . . . . . . . . . . . 10

2.2 Recursive constructive mathematics . . . . . . . . . . . . . . . 11

2.3 Bishop’s constructive mathematics (BISH) . . . . . . . . . . . . 12

2.4 Intuitionistic type theory . . . . . . . . . . . . . . . . . . . . . 13

This chapter gives a general overview of constructivism and its main schools.

Formalization of mathematics in the beginning of the 20th century brought
about “a highly idealized version of mathematical existence” [28]. David Hilbert’s
formalism was prevalent in the scientific circles at the time, so it was hard to pop-
ularise ideas that questioned classical mathematics. Luitzen Brouwer, however,
being concerned about the defects in classical mathematics, endeavoured to set
things right; his groundbreaking ideas led to the establishment of intuitionism.

Intuitionism can be viewed as not only one of the constructivist schools but
also as a basis for constructivism. The main principles of intuitionism proposed
by Brouwer in 1907 and 1908 [33, 34] also hold in Recursive Constructive Mathe-
matics (RCM) and Bishop’s Constructive Mathematics (BISH), both of which came
about only in the middle of the 20th century. Brouwer’s work was continued by
his student Arend Heyting and other followers [35].

Each trend in constructivism has its own peculiarities but the idea that unites
them is that a mathematical statement holds only if it is possible to produce an
‘evidence’ of that. Here we will briefly look at all the major constructive schools
and point out their peculiarities.

9



2.1. Brouwer’s intuitionism and its development

2.1 Brouwer’s intuitionism and its development

The underlying ideas of intuitionism were conceived in Brouwer’s thesis “On the
Foundations of Mathematics”1 in 1907. One of the most prominent features was
rejection of the law of excluded middle (LEM)2. The supporters of the formalism
in mathematics used LEM when working with finite and infinite mathematical
objects. The justification for this lies in their approach to infinite objects, which
they viewed in terms of actual (completed) infinity. On the other hand, Brouwer
looked at them through the prism of potential infinity and, therefore, saw no
rational foundation in extending the use of LEM to infinite situations just because
it worked for the finite objects. Interestingly, Brouwer still considered LEM to be
correct at the time he wrote his thesis. Then he believed that A∨¬A can be
interpreted as ¬A→¬A:

“A function is differentiable or is not differentiable says nothing; it ex-
presses the same as the following: If a function is not differentiable,
then it is not differentiable. But the logician, looking at the words of
the former sentence, and discovering a regularity in the combination
of words in this and in similar sentences, here again projects a math-
ematical system, and he calls such a sentence an application of the
tertium non datur.” 3

Hilbert’s program was based around formalization of mathematics, while
Brouwer was rather sceptical about the use of formal language. His views re-
volved around on the concept that the essence of mathematics lies in mental
constructions rather than the use of formal symbols and manipulation with them.
In this way mathematics exists not within the scope of language but beyond it.
The mathematical language of symbols could be a way to express concepts but it
is not in the core of mathematics. In fact, unlike other mathematicians, Brouwer
chose descriptive writing style for expressing his ideas over symbolic notation
whenever possible. Although, some may argue that this style makes it harder for
his readers to grasp the concepts straight away, it also celebrates the core idea

1Original title in Dutch: “Over de Grondslagen der Wiskunde”
2For every statement A, either A or ¬A holds.
3“Een functie is òf differentieerbaar òf niet differentieerbaar zegt niets; drukt hetzelfde uit,

als het volgende: Als een functie niet differentieerbaar is, is ze niet differentieerbaar. Maar
de woorden van eerstgenoemde volzin bekijkend, en een regelmatig gedrag in de opvolging
der woorden van deze en van dergelijke volzinnen ontdekkend, projecteert de logicus ook hier
een wiskundig systeem, en noemt zulk een volzin een toepassing van het principe van tertium
nondatur.” From Brouwer’s thesis, the translation taken from L.E.J. Brouwer. Collected Works,
volume 1: Philosophy and Foundations of Mathematics (ed. Arend Heyting). North-Holland,
Amsterdam, 1975 [4]

10



2.2. Recursive constructive mathematics

that mathematics should be distinguished from its formal representation. This
descriptive style is also more appropriate, considering Brouwer’s interest in the
philosophical aspects of constructivism. However, it is also due to this interest in
the philosophy that certain mathematical aspects in his program were disadvan-
taged. Thus, though Brouwer was trying to oppose idealism, his “system itself
had traces of idealism and, worse, of metaphysical speculation”[28].

On the other had, Brouwer’s disciple, Heyting, who continued the develop-
ment of intuitionism, was much less averse to formalization. Indeed, when the
Dutch Mathematical Association announced, upon Gerrit Mannoury’s sugges-
tion, a call for formalizing Brouwer’s ideas, it was Heyting who got the prize
for the paper on the topic, which he submitted in 1928 [85]. From there on
he continued systematizing Brouwer’s ideas and introduced formal rules of intu-
itionistic logic in [65]. His axiomatization of arithmetic based on the principles
of intuitionism became known as Heyting arithmetic.

Even more impactful for the development of intuitionism was Stephen Kleene’s
contribution to its formalization. He believed that using a formal system did not
necessarily contradict Brouwer’s ideas and, in fact, could enhance and speed up
their understanding among mathematicians and logicians. Kleene drew parallels
with elementary algebra, where “such formal manipulations add much to the ra-
pidity with which mathematical deductions can be performed” [72]. His most
noteworthy contribution was the introduction of the notion of realizability4 in
1941. He further explained his ideas on Intuitionistic number theory in [71].

2.2 Recursive constructive mathematics

In the 1940s Andrey Markov, a Russian mathematician, developed a new branch
of constructive mathematics, namely recursive constructive mathematics. Fun-
damentally this was a blend of recursive function theory with intuitionistic logic.
Markov also added the principle of unbounded search to his program, known as
Markov’s principle (MP), which states that for all binary sequences consisting of
0s and 1s, if it is not true that all elements of a sequence are 0s, then 1 occurs in
this sequence. Formally, this corresponds to the following statement:

(∀n(A(n)∨¬A(n))∧¬∀n¬A(n))→∃n A(n)

In the constructivist community this principle is not fully accepted. Markov’s
school, which admits MP is known as Russian recursive mathematics.

Maarten McKubre-Jordens argues that this uncertainty about MP is partly
caused by the difference in the strength of an implication A→ B as compared

4a form of interpreting constructive proofs that enables extraction of additional valuable
information from them
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2.3. Bishop’s constructive mathematics (BISH)

to a disjunction ¬A∨B [84]. The first is weaker because if an algorithm takes
a correct proof of A and turns it into a correct proof of B, it still does not make
it clear whether ¬A or B is the case. In [84] McKubre-Jordens also suggests
that one possible justification for admitting MP is that it is possible to implement
an algorithm, which can find 1 at some point in a sequence, provided that not
all elements in the sequence are 0. However, there is no guarantee this can
be achieved before a certain point in time, where it will still be relevant, for
example, the end of humanity.

MP can also be formally stated as a rule:

∀n(A(n)∨¬A(n)),¬¬(∃n A(n)) ` ∃n A(n)

It was proven to be an admissible rule in the constructive counterpart of
Peano arithmetic, Heyting arithmetic, by Troelstra [120] as well as in various
sub-branches of intuitionism by Harvey Friedman [54]. Hugo Herbelin also pre-
sented intuitionistic predicate logic IQCMP, which proves MP [64].

2.3 Bishop’s constructive mathematics (BISH)

Constructive mathematics à la Bishop emerged in 1967, when Errett Bishop pub-
lished his Foundations of Constructive Analysis [28]. There he presented a con-
structivist manifesto, looking at the foundations on which mathematics is built,
exploring the idealism that existed in the field and, finally, bringing forward
the constructivization of mathematics. In his monograph Bishop presented con-
structive proofs of classical theorems, including the Ascoli’s theorem, the Stone-
Weierstrass theorem, the Tietze extension theorem, Riemann mapping theorem,
etc. As Douglas Bridges mentions in [32], Bishop’s approach to constructive
analysis “without a commitment to Brouwer’s non-classical principles or to the
machinery of recursive function theory” had a great impact amongst mathemati-
cians and helped to decrease the existing scepticism towards constructivism.

Yet, in his emphatic publication Schizophrenia in Contemporary Mathematics
Bishop admits that getting people to accept constructivism in mathematics is not
an easy task because there is a constant attack on the common sense due to the
attitudes prevalent at the time:

“One could probably make a long list of schizophrenic attributes of
contemporary mathematics, but I think the following short list cov-
ers most of the ground: rejection of common sense in favor of for-
malism; debasement of meaning by wilful refusal to accommodate
certain aspects of reality; inappropriateness of means to ends; the
esoteric quality of the communication; and fragmentation” [29].
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Bishop’s approach to constructive mathematics offers flexibility in interpret-
ing the “finite routine”5. This allows describing other constructivist trends as
well as classical mathematics through BISH. For example, constructive recursive
mathematics corresponds to BISH that admits Markov’s Principle and the Com-
putable partial functions axiom. BISH with free choice sequence and bar induc-
tion represent a model of intuitionistic mathematics, while classical mathematics
can be explained as BISH with LEM as an axiom.

Overall, Bishop and his followers focus on more pure mathematical activity
as opposed to Brouwer’s broader approach to constructivism.

2.4 Intuitionistic type theory

Around the same time that Bishop was writing his monograph, Per Martin-Löf
was working on a number of constructive theories, which he presented in his
lectures in 1966-68. His Notes on Constructive Mathematics were published in
1968 [82] and gave rise to Intuitionistic type theory also known as Constructive
type theory or, simply, Martin-Löf ’s type theory.

In this approach every proposition has a type and new types can be built
by combining the existing types using type constructors. These constructors are
isomorphic with the logical connectives. A very common example of a type
constructed this way is a function from natural numbers to natural numbers
(N→ N), where the function constructor→ corresponds to implication.

Martin-Löf makes a clear distinction between proofs and derivations. A deriva-
tion shows us that the statement is true; in other words, it is something that rep-
resents how the truth of a proof object is derived. The proof, on the other hand,
is an object that carries the computational content and serves as a witness of the
truth.

Each of these constructivist schools continue to develop, with type theory be-
coming increasingly popular in the logic community.

5by this Bishop meant an algorithm.
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Chapter 3

Realizability

Contents
3.1 History and general aspects of realizability . . . . . . . . . . . 15

3.2 Realizability of induction and coinduction . . . . . . . . . . . . 17

This chapter explains the notion of realizability that is used in program extraction
and gives an overview of different approaches to realizability of induction and
coinduction.

3.1 History and general aspects of realizability

To understand the theoretical concept of realizability one should look into the
Brouwer-Heyting-Kolmogorov (BHK) interpretation1. In intuitionistic logic the
meaning of a formula is not expressed by its truth or falsity, but by a proof.
Consequently, in BHK interpretation the meaning of a formula A is represented
by what constitutes a proof of A2. If this is a compound formula, then it is
necessary to look at proofs of its constituent parts. In this regard the following
applies:

• A proof of a conjunctive formula A∧B is interpreted as a pair 〈a,b〉, where
A is a proof of A and B is a proof of B;

1The name is due to Troelstra and van Dalen, however, there is a dispute in the community
whether Brouwer’s name should be included, considering that this is a step to formalization of
the intuitionistic ideas.

2Although BHK is normally associated with intuitionism, Masahiko Sato developed a classical
version of BHK interpretation in [103].
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3.1. History and general aspects of realizability

• A proof of a disjunctive formula A∨B is a pair 〈a,b〉, where a is 0 and b is
a proof of A, or a is 1 and b is a proof of B;

• A proof of A→ B is a function, which transforms a proof of A into a proof
of B;

• There is no proof of falsity (⊥) and a proof of the formula ¬A is defined as
A→⊥, that is a function f that converts a proof of A into a proof of ⊥.

• A proof of ∀x A(x) is a function f that converts an element a ∈ D into a
proof of A(a);

• A proof of ∃x A(x) is a pair 〈a,b〉 where a is an element of D, and b is a
proof of A(a).

BHK interpretation serves as a solid theoretical basis of realizability. Nev-
ertheless, the notion of proof here is abstract. If we want to consider the use
of realizability principles from a program extraction perspective then there is a
need for a more “tangible” notion of proof. Realizability provides an approach
to obtain such tangible proof object, following the same inductive structure as
the BHK-interpretation. Here one may consider either Kleene’s realizability in-
terpretation — which uses natural numbers as realizers of formulas in Heyting
arithmetic — or Kreisel’s modified realizability — which uses typed lambda cal-
culus.

The following clauses describe Kleene’s interpretation and explain what it
means for a number n to realize a formula A in Heyting arithmetic [72].

• If an atomic formula is true then any n is a realizer. If it is false, then no n
is a realizer.

• A conjunctive formula A∧B can be realized by a pair 〈n,m〉 iff n realizes A
and m realizes B.

• A disjunctive formula A∨B can be realized by a pair 〈n,m〉 iff n is 0 or 1.
Same as stated in the BHK interpretation, if n is 0 then m realizes A and if
it is 1 then m realizes B.

• An implication formula A→ B can be realized by a number n iff there is a
function f encoded by n and whenever m realizes A, f (m) is defined and
realizes B.

• A number n realizes a formula ∀xA(x) iff there is a function f encoded by
n, which returns a realizer for A(m) for any number m.
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3.2. Realizability of induction and coinduction

• A formula ∃xA(x) can be realized by a pair 〈n,m〉 iff n is such that A(n)
holds and m is a realizer for A(n).

Based on these clauses, one can conclude that if A is a statement that can
be proved in Heyting arithmetic then there exists an n which realizes A. Since
number realizers encode computable functions, we can apply the same idea to
programming language terms.

3.2 Realizability of induction and coinduction

There is a multitude of approaches to realizability interpretation based on dif-
ferent types of logic systems used as a foundation of such interpretation. While
realizability interpretation of first-order intuitionistic logic is relatively straight-
forward, inductive and coinductive definitions are treated diversely.

The use of inductive and coinductive definitions revolves around the notion
of fixed point operators3. A comparative study of various existing definitions of
fixed point operators is provided in [122].

The ways of applying realizability interpretation to proofs involving induction
and coinduction were explored in various logical system, including not only first-
order logic but also second-order logic. For instance, Daniel Leivant [79] and
Jean-Louis Krivine [78] independently suggested a special system AF2, which is
second-order intuitionistic logic that incorporates equations and the functional-
ity for extracting lambda terms from proofs. Unfortunately, programs obtained
in such a way may not necessarily be satisfactory in terms of time complexity.
Therefore, Parigot extended this system, introducing recursive type theory TTR
in order to avoid the efficiency issues [97].

AF2 was also extended by Favio Miranda-Perea who added monotone, not
only positive, (co)-inductive definitions and used clauses to simplify these def-
initions. A clause in this instance is a tuple, which contains a predicate and
function symbols, or tags, associated with this predicate. Tags of a clause can be
constructors in case of inductive predicate expressions and destructors in case of
coinductive predicate expressions [87]. The resulting logic system called MCICD
(Monotone and Clausular Inductive and Coinductive Definitions) includes rules
for folding the least fixed point (µI), iteration (µE), primitive recursion (µE+),
co-iteration (νI), primitive co-recursion (νI+), folding the greatest fixed point/-
coinductive inversion (νIi), and unfolding of the greatest fixed point (νE). This
means that inductive and coinductive definitions in MCICD are not symmetri-
cal due to the absence of inductive inversion. However, inductive destructors,
which are usually defined by unfolding of the least fixed point, can be obtained

3Fixed points are presented in chapter 5.
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3.2. Realizability of induction and coinduction

by means of primitive recursion. This helps to avoid issues with reduction when
applying inductive inversion. Realizability interpretation is given in MCICD*,
an extension of MCICD with additional terms and first-order existential and re-
stricted formulas. Both MCICD and MCICD* have type preservation and strong
normalisation.

An alternative approach is by Makoto Tatsuta [115], who offers two realiz-
ability interpretations of monotone coinductive definitions: expansion-preserving
realizability and realizability based on second-order logic. Tatsuta looks into
monotone coinductive definitions for a number of reasons but mainly because
previous studies of realizability of coinductive definitions were restricted to pos-
itive formulas [115]. He also believes that positive condition is too restrictive
and realizability of monotone coinductive definitions can enhance positive coin-
ductive definitions.

Another system built for working with proofs for the purpose of program
extraction is called Theory of computable functionals (TCF)4. TCF was devel-
oped by Schwichtenberg and used for the development of his theorem prover
Minlog [108]. This system contains inductive and coinductive definitions and
enables program extraction from classical and constructive proofs. TCF is based
on Kreisel’s modified realizability [74]. In his thesis, Schwichtenberg’s student
Kenji Miyamoto presents a combined inductive/coinductive definition in the con-
text of TCF [88]. As Miyamoto points out there, the formal system they are using
is similar to Berger’s previous research, however, there is a difference in formal-
ization. Our approach in this thesis is close to TCF and is based on previous
results in [16, 23] with a number of modifications.

4See more on TCF in chapter 8.
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Chapter 4

Lambda Calculus and its variations
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This chapter presents Lambda calculus, the underlying theory of various formal
logical systems. Lambda calculus has many extensions and variations. The basic
distinction is between typed and untyped lambda calculus. Here we present the
basic form of lambda calculus as well as its typed extension. The IFP version pre-
sented in this thesis is untyped but we consider types as implicit. It is, however,
possible to introduce explicit types in IFP as well, as was done in [24].

4.1 Lambda calculus

Lambda calculus was introduced by Alonso Church in the 1930s to formalise the
idea of effective computability [10].

In its most simple form lambda calculus has three sorts of terms.

• Variables (typically x, y, etc.).

• Abstraction (λx M, where M is a lambda term and x is a variable). Intu-
itively, λx M is a function that takes an argument x, which may or may not
occur inside of the expression M.

• Application (MN, where M and N are lambda terms). It corresponds to
function application, where the function represented by M is applied to the
argument N.
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4.1. Lambda calculus

These terms can be manipulated using the following rules, which make lambda
calculus the powerful system that it is.

α-equivalence allows bound variables renaming, i.e., two terms are equiv-
alent even if bound variables are renamed consistently. In other words,
names of λ -bound variables in terms are insignificant, as long as λ -ab-
stractions express the same function after renaming. This means that vari-
ables can only be renamed in a way that avoids capturing free variables.
Thus, λx x and λy y are α-equivalent; they are both identity functions.
λx(λy x) and λy(λy y), on the other hand, are not equivalent as the first
one is a constant function, while the second one will always return an
identity function.

β -reduction is a way of expressing the notion of function application. It
is based on variable substitution. Namely, we can say that a lambda term
((λx M)N) can be β -reduced to the term M[N/x]. This means that all oc-
currences of variable x in M are substituted by N. It is important, however
that N should not contain a free variable that becomes bound in case of
such substitution. For example, consider the following: if M = λ z (x y) and
N = z and z in M is not substituted, then the application ((λx M)N) can be
wrongly reduced to λ z (z y), making z bound in this expression. However,
if α-equivalence is first performed on M, making M = λw (x y), then we
achieve the correct β -reduction to λw (z y), where z remains free:

((λx (λw (x y)))z)⇒β (λw (z y))

η-conversion is linked to the fact that two functions are equal if they re-
turn the same result for all arguments. For example, f (x) = 10+ x and
g(x) = 5+ x+5. These two functions will always return the same value of
x+10 although they are defined differently. η-conversion can be summed
up as follows: the lambda expression λx ( f x) is equivalent to f if and only
if x does not occur free in f .

The original Church’s lambda calculus formulation was untyped. It is also
Turing complete, meaning that it is possible to do recursive computation using
only the constructs of pure lambda calculus. In this respect natural numbers
are represented by Church numerals, e.g. 0 = λ f λx (x), 1 = λ f λx( f x), 2 =
λ f λx( f ( f x)), etc. β -reduction corresponds to computation. For instance, if
we want to add 1 to some number m (a Church numeral), then we need to
apply λnλ f λx( f (n f x)) to m and β -reduce this expression to obtain the result.
Recursion is achieved by the fixed point combinator1 Y .

1A combinator is a lambda term with no free variables.
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4.2. Simply typed lambda calculus

4.2 Simply typed lambda calculus

Looking at β -reduction, one might think that if it is applied enough times, then
eventually a normal (not further reducible) form can be obtained. Lambda cal-
culus in its pure form, however, does not satisfy the normalization property.
Consider an expression Ω = ωω, where ω = λx(xx). Applying β -reduction we
substitute both xs in the first ω by the second ω. This, however, means that we
get the original expression (λx(xx))(λx(xx)) back, i.e. β -reduction gets stuck in
a loop Ω⇒β Ω.

On the other hand, introducing types to lambda calculus solves the problem
with normalization. In the programming context, since lambda calculus with
types satisfies the normalization property, it can be viewed as a “programming
language” in which every program terminates. The normalization property that
we have in this case, however, comes with a price of making the system non-
Turing complete, that is limiting the number of computable functions that can
be defined in it. Schwichtenberg showed in [106] that functions definable in the
simply typed lambda calculus are exactly the extended polynomials and in [58]
Jean-Yves Girard showed that the functions definable in second-order calculus
are exactly the computable functions, whose totality can be proven in second-
order arithmetic. This is a huge class of computable functions, which is more
than sufficient for practical purposes.

Henk Barendregt defines types as objects of a syntactic nature that may be as-
signed to lambda terms [11]. There are two main presentations of simply typed
lambda calculus. One was proposed by Curry in 1934 [42] and another one
by Church in 1940 [37]. The main difference between these approaches is that
types in the first one are implicit, while in the second one explicit annotations
are given to abstracted variables. This means that in case of lambda calculus
à la Curry, a program can be written without types and then type inference is
performed to check if it is possible to assign a type. In Church’s version types
should be specified when the program is written.

In its most basic form simply typed lambda calculus is based on the set of
types:

Ty 3 ρ,σ ::= b | ρ → σ

Here b stands for base types; ρ → σ is a type of functions mapping elements
of type ρ to elements of type σ . This means a function of type ρ → σ can be
applied to a term of type ρ and such application results in a term of type σ .

If we consider the terms of the pure lambda calculus, abstraction in simply
typed lambda calculus has the following forms:

• Church-style: λx : ρ.M, which means that the bound variable x is of type ρ,
or
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4.2. Simply typed lambda calculus

Γ,x : ρ ` x : ρ Γ ` c : ρ if c : ρ ∈ C∗

∗C is a set of typed constants

Γ,x : ρ ` M : σ

Γ ` λx : ρ .M : ρ → σ

Γ ` M : ρ → σ Γ ` N : ρ

Γ ` M N : σ

Γ ` M : ρ Γ ` N : σ

Γ ` 〈M,N〉 : ρ×σ

Γ ` M : ρ×σ

Γ ` π0(M) : ρ

Γ ` M : ρ×σ

Γ ` π1(M) : σ

Figure 4.1: Typing rules for simply typed lambda calculus [19]

• Curry-style: λx M, where the type of x is not specified.

Apart from variables, abstraction and application, in simply typed lambda
calculus additional terms are introduced. Namely:

• constants (c),

• pairs (〈M,N〉, where M and N are lambda terms)

• projections (π0(M) and π1(M), where M is a lambda term) — π0 will return
the first element of the pair and π1 will return the second element.

For our purposes we also consider an additional type ρ ×σ for pairs.
Terms in simply typed lambda calculus can be checked for well-typedness us-

ing a set of standard typing rules. Figure 4.1 contains the rules for the simply
typed lambda calculus with explicit typing.
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Chapter 5

Domain theory

Domain theory emerged in the late 60s-early 70s and is associated with the name
of Dana Scott. The driving force behind this theory was his desire to establish a
formal semantics for lambda calculus. He approached the task by constructing
a model that linked together the syntactical and notational sides of the lambda
calculus. This approach uses partial computations that contain intermediary in-
formation before the final result is calculated. It is crucial to keep track of the
least element, that is the undefined output that will be used as the input in the
next step of the computation. Domain theory also relies on ordering of the ele-
ments and has connections to Order theory and, specifically Lattice theory as its
branch.

In [110] Scott started exploring the idea of approximation between pro-
grams. This is particularly useful for non-terminating programs; it allows ex-
pressing the features of a programming language through mathematical con-
structs in a clear and elegant way.

In Lattice theory a partially ordered set, or poset is a set (e.g., D) with the
partial order relation v between the elements of D [27]. We write it as a pair
(D,v). This is a binary relation expressing that one object contains more infor-
mation than the one below in the ordering. In other words, the object that is
below approximates the higher one in the ordering. The partial order is charac-
terized by

• reflexivity : ∀d ∈ D d v d,

• transitivity : ∀d,d′,d′′ ∈ D d v d′ v d′′→ d v d′′,

• antisymmetry ∀d,d′ ∈ D d v d′ v d→ d = d′.

A sequence d0 v d1 v d2 v d3 v . . . of elements of D is called a chain. An
element d ∈ D is called an upper bound of the chain if ∀n ∈ N dn v d. The least
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upper bound of the chain, abbreviated as lub, is expressed by t
n≥0

dn. The lub is

defined in terms of the following:

• ∀m≥ 0 dm v t
n≥0

dn

• ∀d ∈ D if (∀m≥ 0 dm v d) then t
n≥0

dn v d

The greatest lower bound, abbreviated as glb is written as u
n≥0

dn. A poset is a

lattice iff for every two elements d,d1 ∈D, there exist the least upper (dtd1) and
greatest lower (dud1) bounds. If the poset D has the least element, it is usually
written as ⊥. In this case ⊥v d for all elements d in D.

Another notion that plays an important role in domain theory and denota-
tional semantics is a fixed point. In simple terms, given a function f and an
element a of the function’s domain, a is a fixed point of f if f (a) = a. Related to
this are the notions of the least fixed point (lfp) and the greatest fixed point (gfp).
In case of a function from a poset to itself, there can only be one lfp represented
by the fixed point that is less than any other fixed point in this set with respect
to the ordering. lfp( f ) of a continuous function f is defined as tn f n(⊥), where
f n(⊥) = f ( f ...( f (⊥)) and n runs through all natural numbers. Similarly, gfp is
represented by the fixed point which is the greatest fixed point in the ordering.
We use lfps for recursion, while gfps are associated with corecursion.

A chain complete poset, is a poset with complete partial order (cpo), where all
chains have least upper bounds. A domain is defined as a cpo that has a least
element. There are many different classes of domains but in this thesis we only
work with Scott domains discussed at the end of this section.

The partial order allows us to find the minimal solution to fixed point equa-
tions. This solution is the limit of increasing chain of approximations to the
solution.

Domain theory distinguishes primitive domains, which are just sets of atomic
elements, and compound domains, which are constructed from the primitive do-
mains [105]. Compound domains include:

• product that takes two domains and builds a new one by combining their
elements into pairs: D1×D2 = {(d1,d2) | d1 ∈ D1 and d2 ∈ D2}, which is
essentially the same principle as Cartesian product in set theory. Here the
partial order relation between the pairs (d1,d2 v d′1,d

′
2) is defined as d1 vD1

d′1 and d2 vD2 d′2. The subscripts D1 and D2 refer to the corresponding
domain ordering.

• disjoint union or sum of two domains D1 and D2 is defined as D1 +D2 =
{(dom1,d1) | d1 ∈ D1}∪{(dom2,d2) | d2 ∈ D2}, where dom1 is a label refer-
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ring to the domain D1 and dom2 is a label referring to the domain D2. The
ordering vD1+D2 is defined as follows:

(dom1,d1)vD1+D2 (dom1,d2) iff (d1 vD1 d2)

(dom2,d1)vD1+D2 (dom2,d2) iff (d1 vD2 b2).

All other elements are not comparable.

A separated sum is a disjoint sum of X and Y with a new bottom element
added.

• function space, denoted by →, takes two domains D1 and D2 and cre-
ates a new domain D1 → D2, which contains functions from domain D1
to codomain D2, that is { f | f : D1→ D2}. Here the domain D1 consists of
a set of inputs and the codomain D2 is a set of all possible outputs. The
partial order between the elements of this new domain is defined as fol-
lows: f v f ′ Def

= ∀d ∈ D1 ( f (d)vD2 f ′(d)). The function space is usually the
space of continuous functions ordered pointwise. A function f : D1→D2 is
continuous if it is monotone and respects directed sups. The latter means
f (supn dn) = supn f (dn) for any increasing chain dn.

• lifted domains. The domain builder ()⊥ is used to create a lifted domain.
Here ⊥ refers to non-termination or non-definedness. For instance, from
the domain D we can create a new domain D⊥, which contains all the
elements of D (called proper elements) plus the extra improper element ⊥.

Semantic domains are normally defined via equations. However, sometimes
programming languages need to be interpreted through reflexive domains, which
are defined recursively and have a form D = F(D). Associated with this is the
notion of Cartesian closed categories of domains, which describes domains closed
under function spaces. If in a poset every directed subset has a sup, then it is
called directed-complete partial order (dcpo). Dcpo is Cartesian closed. Finite sets
belong here. For infinite sets it is not the case. For instance, a set N defined in
the usual way is not a dcpo. In order to make it into a dcpo, a top element needs
to be added. A poset in which every element is the sup of the compact elements
below it is called an algebraic poset. Recursive domain equations can be viewed
as fixed point equations that are solved in categories instead of cpos [112].

With respect to finite sets, we need to consider compact (finite) elements. If
(S,v) is an ordered set and c ∈ S, c is compact iff c� c, where� expresses the
way below relation. For x,y ∈ S we say x� y iff for every directed subset D of S:
if D admits a sup and yv supD, then there is some d ∈ D, such that xv d.

Another prominent name in domain theory is Yuri Ershov. While Scott fo-
cused on semantics, Ershov worked on his Theory of numbering [48], aiming to
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give a foundation for computability theory for structures that were not necessar-
ily just natural numbers.

Although their motivation differs, one can draw a lot of parallels in their
work. This was not apparent until after the fall of the Iron Curtain as commu-
nication between Western scientists and their Soviet counterparts was not very
active prior to that point.

The central point of both theories are domains. With the multitude of do-
mains and their interpretations out there it is important to pinpoint algebraic
domains as the subject of interest in this research. An algebraic domain, also
known as Scott domain or Scott-Ershov domain is a cpo in which all the finite
subsets that have some upper bound also have a lub.

Our research uses Scott’s motivation, for the most part, but it also includes
the computability aspect. We do not only give the denotational semantics of
programs but also present adequacy, showing the link between denotational and
operational semantics.

Domain and its applications are of interest to many researchers, including
Achim Jung and Samson Abramsky, who gave a comprehensive overview of Do-
main Theory in [1], Viggo Stoltenberg-Hansen, who presented mathematical
theory of domains in [113, 31], Abbas Edalat, whose collaborative research in-
cludes many applications of Domain theory to computable analysis [45, 44, 46],
Klaus Keimel [70, 57, 1, 47], Martín Escardó [49, 47, 50, 68], Jens Blank [30,
18, 31], Andrej Bauer [13, 14], Lars Birkedal and Rasmus Møgelberg [26, 89],
and others.
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Chapter 6

Semantics
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Showing the correctness of a program is not a trivial task. Syntax and adherence
to a grammar are important in the creation of a working program. However, it
is also essential to ensure that the meaning of this program is as expected. Se-
mantics is exactly the area that works with meanings. Traditionally, in computer
science we distinguish three ways of looking at the meaning of a program.

• Operational semantics, which conveys the meaning of computational steps,
that is starting from a certain state1 and looking at how the end result of
the computation is achieved.

• Axiomatic semantics, which conveys the meaning through axioms and rules
of a logic that describe the intended connotation of program commands;
this semantics is used to show partial correctness of a program in terms of
pre- and post-conditions.

• Denotational semantics, which conveys the meaning of a program in terms
of a mathematical function that assigns to each program an object in some
mathematical space.

1One of the core notions in semantics is the state of the memory. Assuming that a program is
computed through variables, the state can be interpreted as a function that maps these variables
into values.
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6.1 Operational semantics

Operational semantics is associated with Gordon Plotkin, who introduced struc-
tural operational semantics (SOS), also known as small-step semantics in 1981
[99], and Gilles Kahn, who, noticing the growing popularity of Plotkin’s ideas,
introduced the big-step operational semantics in 1987 [69]. Kahn referred to it as
natural semantics. The use of adjective “operational” is attributed to Scott [111].

There is also an alternative way of representing operational semantics called
reduction semantics first presented by Matthias Felleisen and Robert Hieb in 1992
[52], however, for the purposes of our research, we only focus on the first two,
although we sometimes refer to both, big and small, semantics in terms of reduc-
tion steps.

SOS can be expressed in terms of transition systems. These systems are used
to describe how a procedure (calculation) is carried out step by step using tran-
sitions. These transitions must follow specially defined inference rules, which
ensure the validity of the transitions. Small-step semantics represents the calcu-
lation process with high level detail, making it easy to follow and intuitive. This
led to popularity of SOS in the computer science community. In some situations,
however, such detailed description is unnecessary, and the rules can be repre-
sented in a simpler, more natural way. This is where Kahn’s approach is more
suitable, allowing the use of fewer rules and resulting in simpler proofs. Big step
semantics is a simple way of reasoning about evaluation, but SOS allows observ-
ing intermediate state transitions and provides easier reasoning about infinite
computations (we can advance a computation as many steps as we need).

6.2 Axiomatic semantics

Axiomatic semantics appeared in the late 60s and is associated with the names of
Robert Floyd [53] and Tony Hoare [66]. In his 1969 paper Hoare acknowledges
Floyd’s contribution:

“The formal treatment of program execution presented in this paper
is clearly derived from Floyd. The main contributions of the author
appear to be: (1) a suggestion that axioms may provide a simple
solution to the problem of leaving certain aspects of a language un-
defined; (2) a comprehensive evaluation of the possible benefits to
be gained by adopting this approach both for program proving and
for formal language definition” [66].

Axiomatic semantics is built around assertions about programs and rules that
help one to check the truth of these assertions.
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6.3. Denotational semantics

For example, we have an assertion P (pre-condition) and an assertion R (post-
condition). We construct a so-called Hoare triple by combining these assertions
with a program Q in the following way: P{Q}R. If the pre-condition holds and
the program executes and terminates, then the post-condition holds. To show
how this works in the case of arithmetic, several axioms about the general prop-
erties of the basic arithmetical operation need to be presented in the form of
axioms. For instance, amongst the axioms that Hoare introduces in his paper are
commutativity of addition and multiplication, associativity of addition and mul-
tiplication, addition of 0, and others. Based on that, we can check the validity of
a triple, for instance x = 1{x := x+0}x = 1 is valid.

Since axiomatic semantics is developed to check the correctness of programs,
Hoare stresses the need to consider assignments. He formalizes the Axiom of
Assignment as ` P0{x := f}P , where x is variable and f is an expression that may
contain x. Assuming that we are working in a programming language that has no
side effects, by performing the substitution [x/ f ] we get P0 from P. Additionally,
he introduces several inference rules to combine axioms and theorems for more
robustness. These include rules of consequence, composition, and iteration.

6.3 Denotational semantics

Denotational semantics is associated with Christopher Strachey [114] as well as
Scott’s research in the area of domains [61, 109].

Strachey was concerned about the knowledge gap and lack of agreement
that his contemporary programming language designers had when it came to
understanding of the meaning of programs.

“The trouble seems to be that programming language designers of-
ten have a rather parochial outlook and appear not to be aware of
the range of semantic possibilities for programming languages. As a
consequence they never explain explicitly some of the most impor-
tant features of a programming language and the decisions among
these . . . have a very important effect on the general flavour of the
language. . . . although the subject is clearly a branch of mathemat-
ics, we still have virtually no theorems of general application and
remarkably few specialised results” [114].

The idea behind denotational semantics is giving meanings to programs through
associations with certain mathematical objects.

One can draw a parallel with philosophy, where a number is just a represen-
tation of the idea of a number. Similarly, in a programming context the integer 2,
which is internally represented by a combination of bits, corresponds to 2 ∈ Z in
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6.3. Denotational semantics

mathematics. Giving a denotation to each object in a programming language en-
ables us to ensure that the intended concepts are indeed represented correctly.
For instance, the expression J2+ 3K evaluates to J5K. The meaning of this ex-
pression in mathematics is 5 ∈ Z. To understand why it is indeed true, we look
at the meaning of its components J2K and J3K and the meaning of the operation
J+K, which in this case corresponds to the addition in mathematics. Regardless
of whether one evaluates this expression first or simply looks at the components,
the correspondence between the programming concepts and mathematical ob-
jects remains correct.

While this looks fairly straightforward, defining a function in a program as a
mathematical function was tricky, specifically because there needs to be a math-
ematical object that represents recursive functions. Here is where domain theory
and the concept of partial functions came into play to express the computations
that can loop and potentially fail. Recursion in this case is represented as an
approximation of a result.
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Chapter 7

Harrop formulas

Considering Curry-Howard isomorphism1 one may think that “translation” of a
mathematical proof into a computer program is a straightforward process, which
does not require any additional processing. However, such a “translation” may
result in programs of unnecessarily high complexity. Therefore, some filtering of
proof content is required. While normalization brings one level of such filtering,
it still does not guarantee that all of the “translated” content is computation-
ally relevant. This motivates us to introduce the distinction between Harrop
and non-Harrop formulas with the purpose of filtering out “pseudorealizers” and
including only relevant content.

In 1932 Kurt Gödel made an observation, without stating the proof, that

• If a disjunction A∨B is a theorem provable in the intuitionistic proposi-
tional calculus then either A is a provable theorem or B is a provable theo-
rem in this calculus.

The proof of this observation, referred to as the disjunction property, was later
given by Gerhard Gentzen, John McKinsey and Alfred Tarski, Kleene and others
[90]. Kurt Schütte obtained the same result for predicate calculus using cut elim-
ination. Helena Rasiowa and Roman Sikorski also proved it for predicate logic.
Schütte’s model of the calculus resembles that of Gentzen, although he does not
use sequences. Rasiowa and Sikorski prove this by looking at the algebraic struc-
ture of predicate calculus. Their approach is inspired by the algebraic proofs for
propositional calculus by McKinsey and Tarski as well as Ladislav Rieger [102].

Another property of intuitionistic logic is the existence property proven by
Kleene

1Curry-Howard isomorphism is direct relationship between proofs and programs.
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• An existential statement ∃xA(x) is a provable theorem if and only if for
some closed term t, A(t) is a provable theorem.

With these properties in mind, to separate constructively valid content from
non-constructive content, a subset of formulas H is defined below. This subset
does not contain disjunction or existential formulas in strictly positive position.

• Atomic formulas, including ⊥, are H.

• A∧B is H if both A and B are;

• A→ B is H if B is H and A is an arbitrary well-formed formula;

• ∀x A is H if A is.

Such formulas are known in various sources as Harrop formulas after Ronald
Harrop, who introduced them in 1956. However, Schwichtenberg and Troelstra
refer to them in [121] as Rasiowa-Harrop formulas as Rasiowa had introduced
them independently in her 1954 and 1955 papers. In fact, Harrop himself men-
tions her research in his 1956 paper [62].

A more complex definition of Harrop formulas is explored in [86], however,
for our purposes, using the above definition as a base is more appropriate. We
will, however, modify it slightly by allowing existential quantifiers without re-
striction, and extend it to cater for the language that we are using. The changes
will be described in section 9.4.
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Chapter 8

Program extraction

Computer technologies developed immensely in the last 30 years and became
ubiquitous. Having an undoubtedly positive effect on our lives, such rapid
progress was not without faults. The speed of program development was of-
ten prioritised. Although software checks were performed, especially in safety-
critical applications, they turned out not to be sufficient in a number of cases and
led to fatalities and financial losses. As we welcome technology into our lives yet
more, making sure that the software, seamlessly integrated in everyday objects,
is indeed correct stands out as a priority.

Classically, program correctness was done by writing a program and adding a
separate proof of its correctness. Alternative to that is proving a theorem that is
a formalized representation of program specifications and extracting a program
from it together with the proof of its correctness. This approach, although differ-
ent, takes its inspiration from program synthesis, a method of deriving a program
from the provided specification [55, 81].

The first program extractor, PX (Program eXtractor), appeared around 1985
and was developed by Susumu Hayashi at Kyoto University [63]. Essentially it is
a constructive logic for computation and a tool for program extraction written in
Lisp. It can also be seen as a foundation of type theories. Although it may at first
seem that the system development was inspired by type theory, which was on the
rise at the time, PX is in fact based on an untyped theory. The actual inspiration
came from the research performed by the Japanese group. Specifically, in 1979
Shigeki Goto [60] and Masahiko Sato [104] looked at using Gödel’s interpreta-
tion for extracting programs from proofs in Heyting arithmetic. Hayashi found
the results achieved in this way unsatisfactory due to slowness of the experimen-
tal reducer developed for Sato’s approach and the lack of correctness proof at
compilation for Goto’s system. PX uses realizability interpretation, called refined
px-realizability, instead of Gödel’s interpretation and is built on the basis of the
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constructive system T0 [51].
Nuprl [80], Coq [117], Isabelle/HOL [67], and Minlog [118] are among the

modern proof assistants that have program extraction functionalities. Each of
the mentioned tools implements this functionality in its specific way. Neither of
them was built with program extraction as its primary goal.

In 1984 Robert Constable and his collaborators released Nuprl, a proof devel-
opment system based on Martin-Löf type theory. Nuprl takes its roots in Bate’s
refinement logic [12], Cornell Program Synthesizer [116], Lambda-prl [39] and
aims to present constructive type theory as practiced in Cornell.

A detailed tutorial draft describing the capabilities of the system appeared
1985. This tutorial was officially published in 1986 [38]. Already back then
the system had a special evaluation mechanism that allowed using Nuprl as a
functional programming language. This method enabled extraction of construc-
tive meanings of theorems in the form of (executable) terms. The users could
save these terms into a library and run them on an interactive evaluator. The
terms (programs) are extracted in ML. Nuprl includes libraries of theorems and
other mathematical data and libraries of ML programs. These are helpful for
generating proofs for new theorems.

Over the years Nuprl developed into Nuprl LPE, an extensive logical pro-
gramming environment with multiple inference engines, editors, evaluators, and
translators. All these independent modules communicate with the central library
module that stores information about completed proofs and their environments
[3]. Overall, Nuprl LPE is a powerful framework aimed at facilitating the proof
process.

Coq is another system that allows program extraction. This tool is based on
dependent type theory and the Curry-Howard isomorphism. Its roots go back to
1984, when Thierry Coquand and Gerard Huet presented their Theory of Con-
structions, which was a preliminary version of The Calculus of Constructions (ab-
breviated as CoC) published in 1988 [40]. An important step in the development
of the system was introduction of a formal realizability interpretation by Chris-
tine Paulin-Mohring in 1989 [98] and subsequent implementation of the pro-
gram extraction as an extra feature of Coq by Benjamin Werner. Later program
extraction was re-implemented by Jean-Christophe Filliâtre and Pierre Letouzey.
Currently, Coq allows extraction of programs in OCaml, Haskell, and Scheme.

Although program extraction is fairly well developed in Coq, it is not the only
way of ensuring correctness of programs. An alternative approach aimed at gen-
erating the correctness proof from a program itself is presented in [95].
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Isabelle is a framework that can work with different logics and Isabelle/HOL
is a widely-used system which implements a variant of Church’s simple theory
of types. Therefore, unlike Nuprl and Coq, which are based dependent type the-
ories, Isabelle allows representing proofs as lambda terms. With that in mind,
Stefan Berghofer came up with a framework enabling extraction of programs
from constructive proofs in Isabelle/HOL and successfully applied it in several
non-trivial cases [25].

Minlog was developed by Schwichtenberg et al. who aimed to create a system
that would use “the proofs-as-programs paradigm to let program development
go hand-in-hand with program verification” [15]. It is related to implementa-
tions of constructive type theory. Programs extracted from Minlog are simply
typed lambda terms with higher type primitive recursion. In other systems pro-
grams might not be as clearly separated from proofs and may have complicated
dependent types.

Theory of Computable Functionals (TCF), the underlying system of Minlog,
is based on minimal logic, where formulas are defined through implication and
universal quantification operations. Structurally speaking, TCF works with for-
mula forms, predicate forms, and clause forms. Rules for well-formed forms are
given in [108]. Existence, conjunction and disjunction are predicates defined
inductively similarly to the definitions by Martin-Löf from [83]. TCF works with
both inductive and coinductive definitions. For example, in the case of natural
numbers one can define totality and cototality and the corresponding least and
greatest fixed point axioms accordingly.

The Minlog system served as an inspiration for our proof assistant. Indeed,
there are a lot of similarities in the underlying system of TCF and the system that
we are using. Both systems are based on first-order logic, and our proof assistant
can be viewed as a variant of Minlog with a focus on abstract mathematics. The
underlying difference is in the way how induction and coinduction are defined.
We treat them as fixed points of strictly positive operators, while in Minlog they
are expressed via clauses, similar to the way it is done in Coq and Agda. Our
approach allows us to treat induction and coinduction as dual to each other.

From a theoretical perspective the two approaches are equivalent but in prac-
tical terms there is a big difference. This is because in our case we aim for more
abstraction and extract programs using different notions of realizability.

When programs are extracted from proofs, there is always a concern about
their efficiency in terms of complexity. Therefore, there is still the need to find
appropriate program simplification strategies. Alexei Nogin attempted this for
Nuprl with partial success and outlined several principles of programming in
[91].
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Minlog distinguishes between non-computational and computational formu-
las, and further between computationally irrelevant (Harrop) and computation-
ally relevant (non-Harrop) formulas. Such a distinction means that the extracted
programs are cleared of any content that is computationally irrelevant. This op-
timises the time complexity of these programs.

TCF makes use of non-computational quantifiers ∀nc and ∃nc, i.e. quan-
tifiers which allow one to avoid dependency of an extracted program on the
quantified variable. Although we are not explicitly marking quantifiers as non-
computational in our system, the realizability definitions for quantified formulas
(see fig. 9.10) depict the same principle.

An interesting study comparing program extraction from normalization proofs
in Coq, Isabelle and Minlog, which draws attention to the differences between
the systems and aspects that each system can borrow from the others, is given in
[17].

Another proof assistant that allows program extraction is Agda [2]. An ex-
ample of program extraction for exact real number computation is presented in
[36].

To conclude, there are various systems that have program extraction inte-
grated to various extent. Neither of these tools is currently able to work with our
intended formal system.
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Part II

Theoretical framework for program
extraction
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Chapter 9

Formal system for program
extraction
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This chapter looks at the theoretical framework developed specifically for the
purpose of program extraction. We begin with the introduction of the formal
system of intuitionistic fixed point logic (IFP) as the core on which the program
extraction infrastructure is built. This includes the derivative system RIFP, which
is a version of IFP with realizers. Here we present our version of realizability
interpretation as a core part of the program extraction process.

Intuitionistic fixed point logic with its extensions emerged as a result of
search for a new approach to program extraction in which induction and coin-
duction are dual. Induction is used by proof theorists, logicians and mathe-
maticians on a regular basis. Coinduction, although used as well, usually takes
longer to comprehend, especially for those who are new to it. Therefore, the
duality of these two concepts could be helpful and enhance the understanding
of coinduction.

The development of IFP was initiated by Berger. It is hard to pinpoint when
and where exactly IFP was conceived, however a formal system that closely re-
sembles IFP is outlined in [16].
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9.1. IFP

The existing formalization underwent multiple reevaluations on the basis of
program extraction efficiency. It was also adjusted and improved after consid-
eration of the restrictions that we encountered initially when proving that the
system was sound.

The development of the proof assistant alongside the theory also urged a
number of modifications, for instance in terms of operational semantics. The
following subsections present IFP as a schema, rather than a fixed system for a
specific mathematical field. One can view it as a family of systems for formaliza-
tion of various mathematical fields.

9.1 IFP

The base of IFP is intuitionistic first-order logic. It is extended through the addi-
tion of the least and the greatest fixed points of strictly positive (s.p.) operators.
An operator is strictly positive if it is of a form λX P, where every free occurrence
of the variable X in the predicate P is at a strictly positive position, i.e. not in
the left hand side of an implication. The definition of free variables is given in
fig. 9.2. This definition distinguishes between object and predicate variables in
IFP and also includes program variables, which will be introduced in section 9.3.

IFP is parametric in a set of sorts, a set of terms, where each term has a
particular sort, and a set of predicate constants, where each predicate constant
has a certain arity, i.e. a list of sorts. A sort denotes a set of mathematical
objects of the same ‘kind’. A term is either a variable, a constant, or a function
symbol applied to terms. A function symbol is the name of a function which, in
the first place, is an abstract object. With a function there may be associated a
computation process but this is not necessarily so. For simplicity, we assume we
have only one sort. We also define three types of expressions simultaneously:
predicates (P,Q), formulas (A,B), and operators (Φ,Ψ). Expressions existing in
the language of IFP are concisely represented in fig. 9.1. Since we opted to use
only one sort here, arity is represented by the cardinality for the same purpose
of making notation more concise.

Amongst predicates one distinguishes predicate variables (e.g., X ,Y ), or predi-
cate constants (e.g., P0,Q0). Each of these have a fixed arity. A predicate constant
is a parameter and users can choose what predicate constants they want. For
instance, we define a predicate constant ⊥ of zero arity, which represents falsity.
We have used ⊥ earlier to denote a domain element. The predicate constant ⊥
has no relation to it. In this thesis we use this symbol to denote both notions.
The intended meaning can be derived from the context in which it is used.

Predicates can also be abstractions (e.g., λ~x A). In this case ~x is a shorthand
for a list of variable-sort tuples, the length of which represents the arity of such
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9.1. IFP

Formulas 3 A,B ::= P(~t) (P not an abstraction1,~t arity(P) many terms)
| A∧B | A∨B | A→ B | ∀x A | ∃x A

Predicates 3 P,Q ::= X | P0 (P0 atomic) | λ~x A | µ Φ | ν Φ

(arity(λ~x A) = |~x|, arity(µΦ) = arity(νΦ) = arity(Φ))

Operators 3Φ,Ψ ::= λX P (arity(λX P) = arity(X) = arity(P))

Figure 9.1: Expressions in IFP

FV (x) = {x} (x any* variable)

FV (c) = /0 (c any* constant)

FV ( f (t)) = FV (t)
FV (P(t)) = FV (P)∪FV (t) (P not an abstraction)

FV (A � B) = FV (A)∪FV (B) (� in {∧,∨,→})
FV (�(x) A) = FV (A)\{x} (� in {∀,∃})

FV (λx A) = FV (A)\{x}
FV (�(Φ)) = FV (Φ) (� in {µ,ν})
FV (λX P) = FV (P)\{X}

FObV (E) = {x ∈ FV (E) | x is an object variable}
FPredV (E) = {x ∈ FV (E) | x is a predicate variable}
FProgV (E) = {x ∈ FV (E) | x is a program variable}

∗obj., pred., or prog.

Figure 9.2: Free variables in IFP

a predicate. Lastly, predicates can be fixed points µΦ and νΦ. The arity of these
predicates corresponds to the arity of the operator Φ.

An atomic predicate formula is of a form P(~t), where P is a predicate that is
not an abstraction1 and~t is a list of terms associated with this predicate. The
sorts that correspond to these terms represent the arity of P. An equation s = t is
an example of such atomic formula with an infix notation. It can be written as
= (s, t), where = is a predicate and s and t are terms of the same sort.

1If P would be an abstraction, we would need to normalize the formula. We exclude abstrac-
tion to avoid redundancy in this case.
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9.1. IFP

P(~t) is s.p. in X iff P is s.p. in X .

A3B where 3 ∈ {∧,∨} is s.p. in X iff A and B are s.p. in X .

A→ B is s.p. in X iff X is not free in A and B is s.p. in X .

3x A where 3 ∈ {∀,∃} is s.p. in X iff A is s.p. in X .

Y is s.p. in X (irrespective of whether Y = X or Y 6= X).

P0, where P0 is a predicate constant, is s.p. in X .

λ~x A is s.p. in X iff A is s.p. in X .

3Φ, where 3 ∈ {µ,ν}, is s.p. in X iff Φ is s.p. in X .

λY P is s.p. in X iff Y = X or P is s.p. in X .

Figure 9.3: Definition of strict positivity

Composite formulas include conjunction (A∧B), disjunction (A∨B), impli-
cation (A→ B), and quantified formulas (∀x A,∃x A). As mentioned earlier, the
predicate constant ⊥ has zero arity, so the corresponding formula for it is ⊥().

Operators are defined as abstractions over predicate variables, for example
λX P, where the arities of X and P must coincide. Moreover, the arity of λX P
is also the same. Throughout this thesis and for the purposes of IFP we assume
that all operators are strictly positive. Strict positivity of expressions is defined in
fig. 9.3. In a general sense, a free occurrence of a predicate variable is strictly
positive if it is not in the left part of an implication.

The application of an operator to a predicate is defined as (λX P)(Q)=P[Q/X ].
When a predicate P is defined as the least or the greatest fixed point, we also
write P

µ
=Φ(P) and P ν

=Φ(P) accordingly. If the operator Φ has the form λXλ~x A,
then we also write P(~x)

µ
= A[P/X ] and P(~x) ν

= A[P/X ]. The equivalence relation

(≡) for formulas is defined as A ≡ B Def
= A↔ B and for predicates as P ≡ Q Def

=
∀~x(P(~x)≡ Q(~x)). We use ⊕ to denote an exclusive or; ∃!xP(x) denotes that there
is only one unique x, i.e. ∃xP(x)∧¬∃y(P(y)∧x 6= y). Inclusion is expressed by ⊆.

It is defined as P⊆ Q Def
= ∀~x(P(~x)→ Q(~x)).

An expression is regular if it contains only inductive predicates µ Φ and coin-
ductive predicates ν Φ, where the operator Φ is s.p.. We assume that all expres-
sions are regular.
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The version of IFP presented in this thesis is untyped. It is possible to intro-
duce types for extra precision as it is done in [24], however, this is not essential.
This untyped representation is sufficient as we view types as implicit.

The proof rules of IFP are outlined in fig. 9.4. They include the usual natural
deduction rules for intuitionistic first-order logic as well as rules for induction
and coinduction, closure and coclosure, and equality. We also add variations of
induction and coinduction rules. These include strong induction (SI), half-strong
induction (HSI), strong coinduction (SC), and half-strong coinduction (HSC).
Technically, the variations can be derived from the standard versions of induction
and coinduction and, therefore, may seem redundant. However, they are useful
from the practical perspective, making the proving process less cumbersome.

IFP also permits axioms, which have to be closed non-computational formu-
las. By non-computational (nc) we mean that they contain neither disjunctions
nor free predicate variables. We will see that the requirement for axioms to be
non-computational makes sense because it does not break the Soundness Theo-
rem.

Initially, IFP included only one rule for induction and another one for coin-
duction. However, strengthened versions of these rules were introduced in IFP in
[24] for convenience. Since the operator Φ is monotone, we have the following
inclusions:

Φ(P∩µ(Φ))⊆Φ(P)∩µ(Φ)⊆Φ(P)

Φ(P∪ν(Φ))⊇Φ(P)∪ν(Φ)⊇Φ(P)

This means that the premises in case of strong and half strong (co)induction are
weaker than those in case of the ordinary (co)induction, showing that the vari-
ants are indeed strengthenings of the original versions. The derivability of the
variants from the original version is shown in [16].

We include strong and half-strong (co)induction in IFP to have it aligned
with the practical use of the IFP-based proof assistant. This provides users with
flexibility during the process of proof construction. However, from the purely
theoretical point of view these rules are not required as they are derivable.

9.2 IFP’

In the next section we look at RIFP, an extension of IFP, which also includes
realizers. The link between IFP and RIFP was proven via the soundness theorem
in [21] albeit with the admissibility condition mentioned in the introduction on
page 4. To lift the restriction caused by that condition, an intermediate system
of IFP’ was introduced in [24]. It allowed the use of unrestricted strictly positive
inductive and coinductive definitions.
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9.2. IFP’

Natural deduction:

Use rule Proof by axiom
Γ,A ` A Γ ` A, where A is in a set of axioms.

Only non-computational axioms are allowed.

Introduction Elimination

∧ Γ ` A Γ ` B ∧+
Γ ` A∧B

Γ ` A∧B ∧−lΓ ` A
Γ ` A∧B ∧−rΓ ` B

→ Γ,A ` B
→+

Γ ` A→ B
Γ ` A→ B Γ ` A →−

Γ ` B

∨ Γ ` A ∨+lΓ ` A∨B
Γ ` B ∨+rΓ ` A∨B

Γ ` A∨B Γ ` A→C Γ ` B→C ∨−
Γ `C

Γ ` ⊥ efq
Γ ` A

∀
Γ ` A(x)

∀+
Γ ` ∀xA(x)

Γ ` ∀xA(x)
∀−

Γ ` A(t)

∃
Γ ` A(t)

∃+
Γ ` ∃xA(x)

Γ ` ∃xA(x) Γ ` ∀x(A(x)→ B)
∃−

Γ ` B

∀+ is subject to a variable condition that x /∈ FV (Γ). ∃− is also subject to a variable condition that x /∈ FV (B).

(Co)induction, (co)closure and variations:

Γ `Φ(P)⊆ P
IND

Γ ` µ Φ⊆ P
Γ ` P⊆Φ(P)

COIND
Γ ` P⊆ ν Φ

Γ `Φ(P∩µ Φ)⊆ P
SI

Γ ` µ Φ⊆ P
Γ ` P⊆Φ(P∪ν Φ)

SC
Γ ` P⊆ ν Φ

Γ `Φ(P)∩µ Φ⊆ P
HSI

Γ ` µ Φ⊆ P
Γ ` P⊆Φ(P)∪ν Φ

HSC
Γ ` P⊆ ν Φ

cl, � ∈ {µ,ν}
Γ `Φ(�Φ)⊆ �Φ

cocl, � ∈ {µ,ν}
Γ ` �Φ⊆Φ(�Φ)

Equational reasoning:

refl
Γ ` t = t

Γ ` s = t sym
Γ ` t = s

Γ ` A[s/x] Γ ` s = t
cong

Γ ` A[t/s]

Figure 9.4: Inference rules of IFP
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Γ `Φ(P)⊆ P Mon(Φ)
IND’

Γ ` µ Φ⊆ P
Γ ` P⊆Φ(P) Mon(Φ)

COIND’
Γ ` P⊆ ν Φ

Γ `Φ(P∩µ Φ)⊆ P Mon(Φ)
SI’

Γ ` µ Φ⊆ P
Γ ` P⊆Φ(P∪ν Φ) Mon(Φ)

SC’
Γ ` P⊆ ν Φ

Γ `Φ(P)∩µ Φ⊆ P Mon(Φ)
HSI’

Γ ` µ Φ⊆ P
Γ ` P⊆Φ(P)∪ν Φ Mon(Φ)

HSC’
Γ ` P⊆ ν Φ

Figure 9.5: Induction and coinduction in IFP’

IFP’ rules coincide with the IFP rules, apart from those for induction and coin-
duction. In IFP’, we add a premise, requiring the monotonicity of the operator Φ.
In our implementation, the monotonicity check is performed automatically when
converting from IFP to IFP’, so there is no additional proof obligation for the user.
The presence of this extra premise is useful when doing proofs by induction on
IFP’ rules. Monotonicity is defined below. X and Y are fresh variables.

Mon(Φ)
Def
= X ⊆ Y →Φ(X)⊆Φ(Y ) (9.1)

These new rules for all variations of induction and coinduction are presented
in fig. 9.5. They have a condition that free assumptions in the monotonicity
proof must not contain X or Y free.

While the initial proof of the soundness theorem showed the direct link be-
tween IFP and RIFP, the version of the soundness presented later in this thesis
uses IFP’ instead of IFP. In practice, IFP proofs are translated into IFP’ proofs and
supplemented with the proof of monotonicity of the operator. Therefore, if we
can show (a) that monotonicity of s.p. operators can be proven in IFP’ and (b)
that if IFP proves A, then IFP’ proves A, it suffices to state the soundness theorem
in the form that is given in this thesis. These proofs will be given before the
Soundness Theorem in chapter 10.

9.3 Program semantics and RIFP

RIFP, or Intuitionistic fixed point logic with realizers, is a version of IFP enriched
by a new sort δ and terms of sort δ (denoted M,N,K,L), which are called pro-
grams. Therefore, special predicate variables X̃ , Ỹ are introduced. These pred-
icates are extended versions of the corresponding IFP predicate variables X ,Y ,
which admit an extra argument of sort δ for realizers. The notions of formula,
predicate, operator and the rules are also updated in a similar manner.
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The programs that we extract are untyped. The use of typed programs is
possible, as explained in [24]. Yet, that leads to an unnecessarily complicated
realizability interpretation, which we avoid here without compromising the cor-
rectness of the extracted programs.

The denotational semantics of the programming language is expressed via
a Scott domain of realizers, defined as the solution to the following recursive
domain equation.

D = (Nil+Lt(D)+Rt(D)+Pair(D×D)+F(D→ D))⊥

where + is the disjoint union and × is the Cartesian product of domains. Here,
Nil, Lt, Rt, and Pair are constructors. Lt, Rt, and Pair are program equivalents
of introduction rules. For example, ∧+ corresponds to pairing; in case of ∨+ we
have injections: Lt(d) and Rt(d) (where d ∈D) respectively correspond to the left
and right injection. The F label used with D→D denotes the continuous function
space. The ⊥ subscript adds a bottom element, which is the least element of the
domain D and specifically useful when working with infinite data.

Initially in [21] we distinguished between programs denoting elements of D
and function terms denoting continuous functions on D:

Programs 3M,N ::= a,b (variables) | Nil | Lt(M) | Rt(M) | Pair(M,N) |
case(M,α,β ) | proji(M)(i ∈ {0,1}) | α M |
F(α) | rec(α)

Function terms 3 α,β ::= f ,g (variables) | λa M | app(M)

With that in mind, RIFP also included several axioms for converting between
functions and programs. Later on, inspired by the implementation process, we
revised this definition, removing function terms and adding new program con-
structs. This made the definition simpler and more readable (see fig. 9.6). It is
used in both, [24] and [22].

In fig. 9.6 a, b denote program variables of the sort δ . The elements inside
the brackets of case M of {Cl1; . . . ;Cln} are clauses. These clauses are the form
C(a1, . . . ,ak)→ N, where C stands for a constructor Lt, Rt, or Pair, a1, . . . ,an are
variables, and N is a program.

The program construct recM computes the least fixed point of M, making
M recursive. Since we are not concerned with types in this thesis, we could
have handled recursion using a Y -combinator, commonly used in presentations
of untyped lambda calculus. However, we introduce rec both as a convenience
and for efficiency in our implementation. We use ⊥ for convenience to denote
“undefined”. For example, rec(λx x) has similar semantics to ⊥ because it is a
loop that never produces anything, so it is “undefined”.
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9.3. Program semantics and RIFP

Programs 3M,N ::= a,b (program variables, i.e. variables of sort δ)
| Nil | Lt(M) | Rt(M) | Pair(M,N)

| case M of {Cl1; . . . ;Cln}
| λaM
| M N
| recM
| ⊥

Figure 9.6: Definition of programs

M ◦N Def
= λa M(N a)

[M+N]
Def
= λc case c of {Lt(a)→M a;Rt(b)→ N b}

〈M,N〉 Def
= λc Pair(M c,N c)

πLt(M)
Def
= case M of {Pair(a,b)→ a}

πRt(M)
Def
= case M of {Pair(a,b)→ b}

Figure 9.7: Abbreviations for operations on programs [24]

JaKη = η(a)
JC(M1, . . . ,Mk)Kη = C(JM1Kη , . . . ,JMkKη)

Jcase M of {Cl1; . . . ;Cln}Kη = JKKη [~a 7→ ~d] if JMKη =C(~d)
and some Cli is of the form C(~a)→ K

Jλa MKη = F( f ) where f (d) = JMKη [a 7→ d]
JM NKη = f (JNKη) if JMKη = F( f )

JrecMKη = the least fixed point of f
if JMKη = F( f )

JMKη = ⊥ in all other cases

Figure 9.8: Denotational semantics [24]
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The notions of program composition, sum, pairing, and left/right projections
are defined in fig. 9.7 by desugaring. With respect to the denotational semantics,
every program M denotes a corresponding element JMKη ∈D. Here η stands for
the environment, which maps the free variables of M to elements of D. For closed
terms the environment can be omitted as it is empty. See fig. 9.8.

Additionally, the denotational semantics of programs is reflected through a
number of universally quantified axioms presented below. We consider these
axioms simply as facts in our standard semantics. They are needed to prove
soundness formally, even though they are not used in the proof of Theorem 1
explicitly. These axioms are also added to RIFP as per [24]. This time there
is no restriction for axioms to be non-computational formulas as realizability
interpretation is not applied to RIFP. In the following axioms fun(a) stands for
∃b(a = λc(bc)).

(i) case Ci(~b) of {C1(~a1)→M1; . . . ;Cn(~an)→Mn}= Mi[~b/~ai]

(ii)
∧

i∀~ba 6=Ci(~b)→ case a of {C1(~a1)→M1; . . . ;Cn(~an)→Mn}=⊥

(iii) (λbM)a = M[a/b]

(iv) ¬fun(a)→ ab =⊥

(v) fun(a)∧ fun(b)∧∀c(ac = bc)→ a = b

(vi)
⊕

C constructor∃!~b(a =C(~b)) ⊕ fun(a) ⊕ (a =⊥)

(vii) reca = a(reca)

(viii) P(⊥)∧∀b(P(b)→ P(ab))→ P(reca)

The justification of the first three axioms is straightforward. The first axiom cor-
responds to the usual reduction of a case analysis construct. The second axiom
states that a case analysis of a program that does not evaluate to an applica-
tion of a constructor is undefined. The third axiom corresponds to standard
β -reduction.

The fourth axiom means that if a is not an abstraction then applying it to
b yields “undefined”. The fifth axiom corresponds to Leibniz equality, saying
that if both a and b are abstractions and applying c to each of them yields the
same result, then a and b are equal. The sixth axiom means that any program
is equivalent to a constructor application, an abstraction, or is undefined. The
seventh axiom states that rec computes a fixed point of its argument.

In the last axiom P must be of the form λaA, where A is constructed by dis-
junction, conjunction and universal quantification applied to equations between
programs. We call such P admissible. The last axiom is a restricted form of
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9.4. Harrop expressions

fixed point (Scott) induction. In general, for Scott induction we need predicates,
which are closed under suprema of chains, a property that the admissible predi-
cates possess. This property can be shown by induction on admissible predicates.

Now, with RIFP defined, we can gradually move to realizability interpreta-
tion, which is the base for program extraction. However, before we do so, we
look at filtering out irrelevant information from proofs first. The distinction be-
tween Harrop and non-Harrop expressions, presented in the following section,
is the key to such filtering.

9.4 Harrop expressions

To extract programs, which contain only computationally relevant information,
we want to distinguish expressions that are computationally non-trivial from the
irrelevant content included in the proofs.

A fairly restrictive notion of an expression with computationally trivial con-
tent is the class of non-computational (nc) expressions, which contain no disjunc-
tions and no free predicate variables. However, for our purposes, we only need
computational content in a strictly positive position of an expression. Hence, we
only need to filter out expressions based on the more general Harrop property:
a Harrop expression is an expression containing neither disjunction nor a free
predicate variable in a strictly positive position. We define the Harrop property
for formulas, predicates and operators simultaneously. The definition is given in
fig. 9.9.

Since the language of IFP is richer, the previous notion of Harrop formulas
given in chapter 7 is not fully suitable for our purposes. We need to modify and
extend it by considering different types of expressions, which also contain predi-
cate variables and fixed points of operators. Moreover, the original definitions by
Rasiowa and Harrop are in the context of arithmetic, while in our system (IFP,
see section 9.1) variables range over abstract objects, which makes our approach
to existential quantifiers different.

In the original definition, an existential quantifier claims the existence of a
natural number, which includes a construction of this number. In case of IFP
claiming the existence of an object does not include the claim of a construction
of this object. Hence, we permit existential quantifiers without any restrictions,
so an existential formula can be Harrop.

As an example, in our system the arithmetic understanding of existential
quantification is expressed by the bounded existential quantifier ∃x(N(x)∧A(x))
(instead of just ∃xA(x)). On the surface, this formula appears to be Harrop by
our new definition, however, we also need to consider the predicates that this
expression contains. Here the predicate N involves a disjunction (see page 148,
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9.4. Harrop expressions

P(~t) is Harrop iff P is Harrop

A∧B is Harrop iff A and B are Harrop.

A∨B is not Harrop.

A→ B is Harrop iff B is Harrop.

3xA where 3 ∈ {∀,∃} is Harrop iff A is Harrop.

X is not Harrop, where X is a predicate variable.

P0 is Harrop, where P0 is predicate constant.

λ~xA is Harrop iff A is Harrop.

3Φ where 3 ∈ {µ,ν} is Harrop iff Φ is Harrop.

λX P is Harrop iff P[X̂/X ] is Harrop where X̂ is a fresh predicate constant.

Figure 9.9: Definition of the Harrop property

intuitively a natural number is 0 or a successor). This means that this expression
is computationally non-trivial not because it is an existential formula but because
it is an expression, which contains a non-Harrop predicate.

When analysing an operator Φ, which is an abstraction λX P, we need to
understand whether the abstracted expression is Harrop. However, just looking
at the Harrop property of P won’t suffice here. X is a predicate variable, which
might appear free in P, hence making P non-Harrop. For instance, if P = λx(X ∧
X), then P is non-Harrop. However, X is a recursion variable and its instances
will be substituted eventually. With that in mind, we want to understand whether
there is anything else in Φ other than those instances of X that makes Φ non-
Harrop. In order to do this, we formally substitute X in P by a fresh predicate
constant X̂ and then check whether P[X̂/X ] is Harrop. Clearly, λx(X̂ ∧ X̂) is
Harrop.

The Harrop property is stable under substitution, which is expressed by the
following lemma.

Lemma 1 For an expression E the following holds:

(a) If P is Harrop and E is Harrop, then E[P/X̂ ] is also Harrop;

(b) If E is non-Harrop, then E[P/X̂ ] is non-Harrop without restriction on P;
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(c) If P is non-Harrop and E is non-Harrop, then E[P/X ] is also non-Harrop;

(d) If E is Harrop, then E[P/X ] is Harrop without restriction on P.

Proof. Proof by straightforward induction on E.

9.5 Realizability for program extraction

In this section we introduce the notion of a realizer, which intuitively is the
bearer of the computation content of the expression it realizes.

We formalize realizability in RIFP by simultaneously defining predicates R(E)
and H(E) for every expression E. We refer to the first one as the realizability
interpretation of E and the second one as a simplified realizability interpretation.
Intuitively this means that in the first case the expression has computational
content, while in the second case it does not. More precisely, for every

• non-Harrop formula A we define a predicate R(A) of arity (δ );

• non-Harrop predicate P of arity (~ι) we define a predicate R(P) with an
extra argument for realizers, that is (~ι ,δ);

• non-Harrop operator Φ of arity (~ι) we define an operator R(Φ) with an
extra argument for realizers;

• Harrop formula A we define a formula H(A);

• Harrop predicate P we define a predicate H(P) of the same arity;

• Harrop operator Φ we define an operator H(Φ) of the same arity.

Every IFP predicate variable X of arity (~ι) gets a corresponding RIFP equiv-
alent X̃ of arity (~ι ,δ). The realizability interpretation is presented in detail in
fig. 9.10. Note that we sometimes use arA instead of R(A)(a) for convenience
and to stress visually that a is a realizer of A. These two notations are equiv-
alent. For brevity, we use HX(P) for (H(P[X̂/X ]))[X/X̂ ], which is a temporary
substitution of the predicate variable by a fresh predicate constant discussed in
the previous section.
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R(A) = λa (H(A)∧a = Nil) (A Harrop)

R(P(t)) = λa R(P)(t,a) (P(t) non-Harrop; P is not an abstraction)

H(P(t)) = H(P)(t) (P(t) Harrop)

R(A∧B) = λc (R(A)(πLtc)∧R(B)(πRtc)) (A,B non-Harrop)

R(A∧B) = λa (R(A)(a)∧H(B)) (A non-Harrop, B Harrop)

R(A∧B) = λb (H(A)∧R(B)(b)) (A Harrop, B non-Harrop)

H(A∧B) = H(A)∧H(B) (A,B Harrop)

R(A∨B) = λc (∃a(c = Lt(a)∧R(A)(a))

∨∃b(c = Rt(b)∧R(B)(b)))

R(A→ B) = λ f (∀a(R(A)(a)→ R(B)( f a))) (A,B non-Harrop)

R(A→ B) = λb (H(A)→ R(B)(b)) (A Harrop, B non-Harrop)

H(A→ B) = ∃a R(A)(a)→H(B) (B non-Harrop)

R(�x A) = λa R(�x (A))(a) = λa � x (R(A)(a)) (A non-Harrop; � ∈ {∀,∃})
H(�x A) = �x H(A) (A Harrop; � ∈ {∀,∃})

R(P) = λ (~x,a)(H(P)∧a = Nil) (P Harrop)

R(X) = X̃ (X predicate variable)

H(P0) = P0 (P0 predicate constant)

R(λ~x A) = λ (~x,a) R(A)(a) (Abstraction)

R(�(Φ)) = �(R(Φ)) (Φ non-Harrop; � ∈ {µ,ν})
H(�(Φ)) = �(H(Φ)) (Φ Harrop; � ∈ {µ,ν})

R(λX P) = λ X̃ R(P) (P any predicate)

H(λX P) = λX HX(P) (P is s.p. in X)

Figure 9.10: Realizability interpretation
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To prove the soundness of the system, we first need to show that certain
properties of expressions hold under substitution.

Lemma 2 Let E be an IFP expression (predicate, operator or formula) and P an
IFP predicate, then the following hold:

(a) If P is non-Harrop then R(E[P/X ]) = R(E)[R(P)/X̃ ].

(b) If P is Harrop then R(E[P/X ]) = R(E[X̂/X ])[H(P)/X̂ ].
(a) and (b) hold for arbitrary E. For the case that E is a Harrop expression,

(a) is equivalent to

(c) If P is non-Harrop then H(E[P/X ]) = H(E)[R(P)/X̃ ]

and (b) is equivalent to

(d) If P is Harrop then H(E[P/X ]) = H(E[X̂/X ])[H(P)/X̂ ].

Proof. We start with (c) and (d), which follow directly from (a) and (b) respec-
tively simply by unfolding the definition of R. Note, that for (c), since E is
Harrop, no free predicate variable appears in a strictly positive position. Con-
sequently, following the definition of H and R, all predicate variables will be
replaced with their "tilde" counterpart, including X with X̃ . This means that the
arities of R(P) and X̃ will match. To show (c), we rewrite (a) as below.

R(E[P/X ]) = R(E)[R(P)/X̃ ]

(λa H(E[P/X ])∧a = Nil) = (λa H(E)[R(P)/X̃ ]∧a = Nil) since E is Harrop

Similarly, for (d) we rewrite (b):

R(E[P/X ]) = R(E[X̂/X ])[H(P)/X̂ ]

(λa H(E[P/X ])∧a = Nil) = (λa H(E[X̂/X ])[H(P)/X̂ ]∧a = Nil) since E is Harrop

(a) and (b) are proven by induction on the size of expressions.

We begin with the proof of (a), starting with predicates, where for most cases
the proof is straightforward. The most interesting are the cases of predicate
variables and fixed points.

For a predicate variable, substitution will only occur if the predicate is the
one that will be substituted. With that in mind, R(X [P/X ]) = R(P), which is the
same as the result of this substitution R(X)[R(P)/X̃ ] = X̃ [R(P)/X̃ ] = R(P).
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For a fixed point, i.e., case E = �(Φ), where �∈ {µ,ν}. We show R(�(Φ)[P/X ])=

R(�(Φ))[R(P)/X̃ ].

R(�(Φ)[P/X ])

= R(�(Φ[P/X ])) subst.
= � (R(Φ[P/X ])) def. realiz.
= � (R(Φ)[R(P)/X̃ ]) by i.h.
= � (R(Φ))[R(P)/X̃ ] subst.
= R(�(Φ))[R(P)/X̃ ] def. realiz.

Case E = Q(s), where Q is not an abstraction. We need to show R(Q(s)[P/X ])=

R(Q(s))[R(P)/X̃ ].

R(Q(s)[P/X ])

= R(Q[P/X ])(s) subst.
= λa (R(Q[P/X ])(s,a)) def. realiz.
= λa (R(Q[R(P)/X̃ ])(s,a)) by i.h.
= (λa R(Q)(s,a))[R(P)/X̃ ] subst.
= R(Q(s))[R(P)/X̃ ] subst.

Now for the operator case Φ = λY Q, we assume w.l.o.g. that Y 6= X and
Y /∈ FV (P). We need to show R(λY Q[P/X ]) = R(λY Q)[R(P)/X̃ ].

R((λY Q)[P/X ])

= R(λY (Q[P/X ])) subst.
= λỸ R(Q[P/X ]) def. realiz.
= λỸ (R(Q)[R(P)/X̃ ]) by i.h.
= (λỸ (R(Q))[R(P)/X̃ ]) subst.
= R(λY Q)[R(P)/X̃ ] subst and def. realiz.

Case A∧B (non-Harrop). We need to show R((A∧B)[P/X ])=R(A∧B)[R(P)/X̃ ].
Case A and B are non-Harrop:

R((A∧B)[P/X ])

= R(A[P/X ]∧B[P/X ]) subst.
= λa (R(A[P/X ])(πLt(a))∧R(B[P/X ])(πRt(a))) def. realiz., lemma 1(c)
= λa (R(A)[R(P)/X̃ ](πLt(a))∧R(B)[R(P)/X̃ ](πRt(a))) by i.h.
= λa (R(A)(πLt(a))∧R(B)(πRt(a)))[R(P)/X̃ ] subst.
= R(A∧B)[R(P)/X̃ ] def. realiz.
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Case A is non-Harrop and B is Harrop:

R((A∧B)[P/X ])

= R(A[P/X ]∧B[P/X ]) subst.
= λa (R(A[P/X ])(a))∧H(B[P/X ]) def. realiz., lemma 1(c,d)
= λa (R(A)[R(P)/X̃ ](a))∧H(B)[R(P)/X̃ ] by i.h.
= (λa (R(A)(a))∧H(B))[R(P)/X̃ ] subst.
= R(A∧B)[R(P)/X̃ ] def. realiz.

Case A is Harrop and B is non-Harrop is proven using the similar approach.

Case A∧B (Harrop). Here both A and B are Harrop and so are A[P/X ] and
B[P/X ]. Again, we show R((A∧B)[P/X ]) = R(A∧B)[R(P)/X̃ ]:

R((A∧B)[P/X ])

= R(A[P/X ]∧B[P/X ]) subst.
= λa (H(A[P/X ]∧B[P/X ])∧a = Nil) A[P/X ]∧B[P/X ] is Harrop
= λa (H(A[P/X ])∧H(B[P/X ])∧a = Nil) def. realiz., lemma 1(d)
= λa (H(A)[R(P)/X̃ ]∧H(B)[R(P)/X̃ ]∧a = Nil) by i.h.
= λa (H(A)∧H(B)∧a = Nil)[R(P)/X̃ ] subst.
= λa (H(A∧B)∧a = Nil)[R(P)/X̃ ] A and B are both Harrop
= R(A∧B)[R(P)/X̃ ] def. realiz.

Case A∨B. Disjunction is always non-Harrop regardless of whether A and
B are Harrop. We prove this for the case that A and B are both non-Harrop.
The proofs for other combinations are similar – for Harrop formulas realizers are
equal to Nil.

Here we need to show R((A∨B)[P/X ]) = R(A∨B)[R(P)/X̃ ].

R((A∨B)[P/X ])

= R(A[P/X ]∨B[P/X ]) subst.

= λc (R(A[P/X ]∨B[P/X ])(c)) def. realiz.,

lemma 1(c)

= λc (∃a(c = Lt(a)∧R(A[P/X ])(a))∨∃b(c = Rt(b)∧R(B[P/X ])(b))) def. realiz.

= λc (∃a(c = Lt(a)∧R(A)[R(P)/X̃ ](a))∨∃b(c = Rt(b)∧R(B)[R(P)/X̃ ](b))) by i.h.

= λc (∃a(c = Lt(a)∧R(A)(a))∨∃b(c = Rt(b)∧R(B)(b)))[R(P)/X̃ ] subst.

= R(A∨B)[R(P)/X̃ ] def. realiz.

Case A→ B (non-Harrop). We show R((A→ B)[P/X ]) = R(A→ B)[R(P)/X̃ ].
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Case A and B are both non-Harrop:

R((A→ B)[P/X ])

= R(A[P/X ]→ B[P/X ]) subst.
= λ f (R(A[P/X ]→ B[P/X ])( f )) def. realiz., lemma 1(c)
= λ f (∀a(R(A[P/X ])(a)→ R(B[P/X ])( f a))) def. realiz.
= λ f (∀a(R(A)[R(P)/X̃ ](a)→ R(B)[R(P)/X̃ ]( f a))) by i.h.
= λ f (∀a(R(A)(a)→ R(B)( f a)))[R(P)/X̃ ] subst.
= R(A→ B)[R(P)/X̃ ] def. realiz.

Case A is Harrop and B is non-Harrop:

R((A→ B)[P/X ])

= R(A[P/X ]→ B[P/X ]) subst.
= λa (H(A[P/X ])→ R(B[P/X ])(a)) def. realiz., lemma 1(c,d)
= λa (H(A)[R(P)/X̃ ]→ R(B)[R(P)/X̃ ](a)) by i.h.
= λa (H(A)[R(P)/X̃ ]→ R(B)(a)[R(P)/X̃ ]) subst.
= λa (H(A)→ R(B)(a))[R(P)/X̃ ] subst.
= R(A→ B)[R(P)/X̃ ] def. realiz.

Case A→ B (Harrop). In this case B is Harrop. We need to show R((A→
B)[P/X ]) = R(A→ B)[R(P)/X̃ ].

Case A is non-Harrop and B is Harrop:

R((A→ B)[P/X ])

= R(A[P/X ]→ B[P/X ]) subst.
= ∃a R(A[P/X ])(a)→H(B[P/X ]) def. realiz., lemma 1(d)
= ∃a R(A)[R(P)/X̃ ](a)→H(B)[R(P)/X̃ ] by i.h.
= (∃a R(A)(a)→H(B))[R(P)/X̃ ] subst.
= R(A→ B)[R(P)/X̃ ] def. realiz.

Case �x A, where � ∈ {∀,∃} Here w.l.o.g. we assume x /∈ FV (P).
For formulas with quantifiers we consider Harrop and non-Harrop formu-

las in the same way, since in case of quantifiers the definition of realizability,
R(�x A) = λa (�x R(A)(a)) works for both types of formulas. If A is Harrop,
a = Nil.
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9.5. Realizability for program extraction

We need to show R((�x A)[P/X ]) = R(�x A)[R(P)/X̃ ].

R((�x A)[P/X ])

= R(�x A[P/X ]) subst.
= λa (�x (R(A[P/X ])(a))) def. realiz., lemma 1(c)
= λa (�x (R(A)[R(P)/X̃ ](a))) by i.h.
= λa (�x (R(A)(a)))[R(P)/X̃ ] subst.
= R(�x A)[R(P)/X̃ ] def. realiz.

To prove the statement (b), i.e., if P is Harrop then R(E[P/X ])=R(E[X̂/X ])[H(P)/X̂ ],
we need to prove (b′): if P is Harrop then R(E[P/X̂ ]) = R(E)[H(P)/X̂ ] holds for
all expressions E. Here X̂ is a predicate constant.

We obtain (b) by applying (b′) to E[X̂/X ], that is R(E[X̂/X ][P/X̂ ]) is equal to
R(E[X̂/X ])[H(P)/X̂ ]. Since by substitution E[X̂/X ][P/X̂ ] = E[P/X ], (b) holds.

The proof of (b′) is by induction on the structure of E.
For most cases when E is a predicate, the proof is straightforward.
Case E = �(Φ). We show R(�(Φ)[P/X̂ ]) = R(�(Φ))[R(P)/X̂ ].

R(�(Φ)[P/X̂ ])

= R(�(Φ[P/X̂ ])) subst.

= � (R(Φ[P/X̂ ])) def. realiz.

= � (R(Φ)[R(P)/X̂ ]) by i.h.

= � (R(Φ))[R(P)/X̂ ] subst.

= R(�(Φ))[R(P)/X̂ ] def. realiz.

Case E = Q(s), where Q is not an abstraction. We need to show R(E[P/X̂ ]) =

R(E)[H(P)/X̂ ]:

R(Q(s)[P/X̂ ])

= R(Q[P/X̂ ])(s) subst.

= λa R(Q[P/X̂ ])(s,a) def. realiz.

= λa R(Q[H(P)/X̂ ])(s,a) by i.h.

= λa R(Q)(s,a)[H(P)/X̂ ] subst.

=R(Q(s))[H(P)/X̂ ] def. realiz.
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9.5. Realizability for program extraction

Now for the operator case Φ = λY Q we assume w.l.o.g. that Y 6= X̂ and
Y /∈ FV (P). We need to show R(λY Q[P/X̂ ]) = R(λY Q)[H(P)/X̂ ].

R((λY Q)[P/X̂ ])

= R(λY (Q[P/X̂ ])) subst.

= λỸ (R(Q[P/X̂ ])) def. realiz.

= λỸ (R(Q)[H(P)/X̂ ]) by i.h.

= (λỸ (R(Q))[H(P)/X̂ ]) subst.

= R(λY Q)[H(P)/X̂ ] subst.

Case A∧B (non-Harrop). We need to show R((A∧B)[P/X̂ ])=R(A∧B)[H(P)/X̂ ].
Case A and B are non-Harrop:

R((A∧B)[P/X̂ ])

= R(A[P/X̂ ]∧B[P/X̂ ]) subst.

= λa (R(A[P/X̂ ])(πLt(a))∧R(B[P/X̂ ])(πRt(a))) def. realiz., lemma 1(b)

= λa (R(A)[H(P)/X̂ ](πLt(a))∧R(B)[H(P)/X̂ ](πRt(a))) by i.h.

= λa (R(A)(πLt(a))∧R(B)(πRt(a)))[H(P)/X̂ ] subst.

= R(A∧B)[H(P)/X̂ ] def. realiz.

Case A is non-Harrop and B is Harrop:

R((A∧B)[P/X̂ ])

= R(A[P/X̂ ]∧B[P/X̂ ]) subst.

= λa (R(A[P/X̂ ])(a))∧H(B[P/X̂ ]) def. realiz., lemma 1(a,b)

= λa (R(A)[H(P)/X̂ ](a)∧H(B)[H(P)/X̂ ]) by i.h.

= λa (R(A)(a)∧H(B))[H(P)/X̂ ] subst.

= R(A∧B)[H(P)/X̂ ] def. realiz.

Case A is Harrop and B is non-Harrop is proven using the similar approach.

Case A∧B (Harrop). Here both A and B are Harrop and so are A[P/X̂ ] and
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9.5. Realizability for program extraction

B[P/X̂ ]. Again, we need to show R((A∧B)[P/X̂ ]) = R(A∧B)[H(P)/X̂ ]:

R((A∧B)[P/X̂ ])

= R(A[P/X̂ ]∧B[P/X̂ ]) subst.

= λa (H(A[P/X̂ ])∧H(B[P/X̂ ])∧a = Nil) def. realiz., lemma 1(a)

= λa (H(A)[H(P)/X̂ ]∧H(B)[H(P)/X̂ ]∧a = Nil) by i.h.

= λa (H(A)∧H(B)∧a = Nil)[H(P)/X̂ ] subst.

= R(A∧B)[H(P)/X̂ ] def. realiz.

Case A∨B. Disjunction is always non-Harrop regardless of whether A and
B are Harrop. As in (a), we show a proof for the case that A and B are both
non-Harrop. We need to show R((A∨B)[P/X̂ ]) = R(A∨B)[H(P)/X̂ ].

R((A∨B)[P/X̂ ])

= R(A[P/X̂ ]∨B[P/X̂ ]) subst.

= λc (∃a(c = Lt(a)∧R(A[P/X̂ ])(a))∨∃b(c = Rt(b)∧R(B[P/X̂ ])(b))) def. realiz.,

lemma 1(b)

= λc (∃a(c = Lt(a)∧R(A)[H(P)/X̂ ](a))∨∃b(c = Rt(b)∧R(B)[H(P)/X̂ ](b))) by i.h.

= λc (∃a(c = Lt(a)∧R(A)(a))∨∃b(c = Rt(b)∧R(B)(b)))[H(P)/X̂ ] subst.

= R(A∨B)[H(P)/X̂ ] def. realiz

Case A→ B (non-Harrop). We show R((A→ B)[P/X̂ ]) = R(A→ B)[H(P)/X̂ ].
Case A and B are both non-Harrop:

R((A→ B)[P/X̂ ])

= R(A[P/X̂ ]→ B[P/X̂ ]) subst.

= λ f (∀a(R(A[P/X̂ ])(a)→ R(B[P/X̂ ])( f a))) def. realiz., lemma 1(b)

= λ f (∀a(R(A)[H(P)/X̂ ](a)→ R(B)[H(P)X̂ ]( f a))) by i.h.

= λ f (∀a(R(A)(a)→ R(B)( f a)))[H(P)/X̂ ] subst.

= R(A→ B)[H(P)/X̂ ] def. realiz.

Case A is Harrop and B is non-Harrop:

R((A→ B)[P/X̂ ])

= R(A[P/X̂ ]→ B[P/X̂ ]) subst.

= λa (H(A[P/X̂ ])→ B[P/X̂ ](a)) def. realiz., lemma 1(a,b)

= λa (H(A)[H(P)/X̂ ]→ B[H(P)/X̂ ](a)) by i.h.

= λa (H(A)→ B(a))[H(P)/X̂ ] subst.

= R(A→ B)[H(P)/X̂ ] def. realiz.
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9.5. Realizability for program extraction

Case A→ B (Harrop). In this case B is Harrop. We need to show R((A→
B)[P/X̂ ]) = R(A→ B)[H(P)/X̂ ].

Case A is non-Harrop and B is Harrop:

R((A→ B)[P/X̂ ])

= R(A[P/X̂ ]→ B[P/X̂ ]) subst.

= ∃a R(A[P/X̂ ])(a)→H(B[P/X̂ ]) def. realiz., lemma 1(a,b)

= ∃a R(A)[H(P)/X̂ ](a)→H(B)[H(P)/X̂ ] by i.h.

= (∃a R(A)(a)→H(B))[H(P)/X̂ ] subst.

= R(A→ B)[H(P)/X̂ ] def. realiz.

Case �x A, where � ∈ {∀,∃} Here w.l.o.g. we assume x /∈ FV (P).
For formulas with quantifiers we consider Harrop and non-Harrop formu-

las in the same way, since in case of quantifiers the definition of realizability,
R(�x A) = λa (�x R(A)(a)), works for both types of formulas. In case A is Harrop,
a = Nil.

We need to show R((�x A)[P/X̂ ]) = R(�x A)[H(P)/X̂ ].

R((�x A)[P/X̂ ])

= R(�x A[P/X̂ ]) subst.

= λa (�x (R(A[P/X̂ ])(a))) def. realiz., lemma 1(c)

= λa (�x (R(A)[H(P)/X̂ ](a))) by i.h.

= λa (�x (R(A)(a)))[H(P)/X̂ ] subst.

= R(�x A)[H(P)/X̂ ] def. realiz.
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Chapter 10

Soundness

This section includes a detailed proof of the soundness theorem for IFP (Theo-
rem 1). First, we define a number of lemmas useful for proving the soundness
theorem.

Lemma 3 If IFP, IFP’, or RIFP proves Γ`A, then the same system proves Γ[P/X ]`
A[P/X ], Γ[P/X̂ ] ` A[P/X̂ ], where A, P, X are arbitrary formulas, predicates, pred-
icate variables, respectively, and X̂ is an arbitrary predicate constant that does
not appear in any axiom.

Proof. By structural induction on derivations in IFP, IFP’ and RIFP.
Axiom. Substitution has no effect in case a derivation is using an axiom. This

is due to the restriction that axioms cannot contain free predicate variables.

Use rule. In case of a proof by assumption we have Γ ` A, where A ∈ Γ. It is
clear that to prove A[P/X ] the substitution should also apply to A ∈ Γ.

∧+. Assume Γ ` (A∧B) has been derived from Γ ` A and Γ ` B by ∧+. By i.h.,
Γ[P/X ] ` A[P/X ] and Γ[P/X ] ` B[P/X ]. Hence Γ[P/X ] ` A[P/X ]∧B[P/X ], by ∧+,
which is the same as Γ[P/X ] ` (A∧B)[P/X ].

∧−l . Assume Γ`A has been derived from Γ`A∧B by ∧−l . By i.h. Γ[P/X ]` (A∧
B)[P/X ], which is the same as Γ[P/X ] ` A[P/X ]∧B[P/X ]. Hence, Γ[P/X ] ` A[P/X ]
by ∧−l .

∧−r . Proven in a similar way.

∨+l . Assume Γ ` (A∨B) have been derived from Γ ` A by ∨+l . By i.h. Γ[P/X ] `
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A[P/X ]. Hence, Γ[P/X ] ` A[P/X ]∨B[P/X ] by ∨+l , which is the same as Γ[P/X ] `
(A∨B)[P/X ].

∨+r . Proven in a similar way.

∨−. Assume Γ `C has been derived from Γ ` A∨B, Γ ` A→C, and Γ ` B→C
by ∨−. By induction hypothesis we have the following:

• Γ[P/X ] ` (A∨B)[P/X ]

• Γ[P/X ] ` (A→C)[P/X ], which is the same as Γ[P/X ] ` A[P/X ]→C[P/X ]

• Γ[P/X ] ` (B→C)[P/X ], which is the same as Γ[P/X ] ` B[P/X ]→C[P/X ]

Γ[P/X ] ` A[P/X ]∨B[P/X ] is the same as Γ[P/X ] ` (A∨B)[P/X ], so all the premises
of the ∨− rule hold. Hence, Γ[P/X ] `C[P/X ].

→+. Assume Γ ` (A→ B) has been derived from Γ,A ` B by →+. By i.h.
Γ[P/X ],A[P/X ] ` B[P/X ]. Hence, Γ[P/X ] ` A[P/X ]→ B[P/X ] by→+, which is the
same as Γ[P/X ] ` (A→ B)[P/X ].

→− Assume Γ ` B has been derived from Γ ` A → B and Γ ` A. By i.h.
Γ[P/X ] ` (A→ B)[P/X ] and Γ[P/X ] ` A[P/X ]. Since Γ[P/X ] ` (A→ B)[P/X ] is
the same as Γ[P/X ] ` A[P/X ] → B[P/X ] we can apply the →+ rule. Hence,
Γ[P/X ] ` B[P/X ].

∀+. Assume Γ ` ∀x A has been derived from Γ ` A by ∀+. Here we assume
that x /∈ FV (P) as it can be renamed if needed. By i.h. Γ[P/X ] ` A[P/X ]. Hence
Γ[P/X ] ` ∀x A[P/X ].

∀−. Assume Γ ` A[t/x] has been derived from Γ ` ∀x A by ∀−. By i.h. Γ[P/X ] `
∀x A[P/X ]. Hence, by ∀−, we get Γ[P/X ] ` A[P/X ][t/x]. Here we assume that
x /∈ FV (P) as it can be renamed if needed, so we can swap the substitutions and
obtain Γ[P/X ] ` A[t/x][P/X ].

∃+. Assume Γ ` ∃x A has been derived from Γ ` A[t/x]. By i.h. Γ[P/X ] `
A[P/X ][t/x]. As in the previous case, we can swap the substitution to obtain
Γ[P/X ] ` A[t/x][P/X ]. Hence, by ∃+, Γ[P/X ] ` ∃x A[P/X ].

∃−. Assume Γ ` B has been derived from the premises Γ ` ∃x A(x) and Γ `
(∀x (A(x)→ B)). By i.h. we have Γ[P/X ] ` ∃x A(x)[P/X ] and Γ[P/X ] ` ∀x (A(x)→
B)[P/X ]. Applying substitution, we get Γ[P/X ]`∀x (A(x)[P/X ]→B[P/X ]). Hence,
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Γ[P/X ] ` B[P/X ] by ∃−. Note that the variable condition is satisfied because x is
a bound variable and we can rename it if needed.

IND. Assume Γ ` (µ(Φ) ⊆ Q) derived from Γ ` Φ(Q) ⊆ Q. By i.h. Γ[P/X ] `
(Φ(Q)⊆ Q)[P/X ], which can be rewritten as Γ[P/X ] ` (Φ(Q))[P/X ]⊆ Q[P/X ] (by
distributivity). By IND, we get Γ[P/X ] ` µ(Φ)[P/X ] ⊆ Q[P/X ]. By distributivity,
this corresponds to our goal Γ[P/X ] ` (µ(Φ)⊆ Q)[P/X ].

Proofs for strong and half-strong induction are done in the same way and the
proof of coinduction is completely dual.

The IFP’ versions of different kinds of induction and coinduction are done
similarly, additionally taking into account the monotonicity of the operator.

Proofs of all the above statements in a version with [P/X̂ ] are done in exactly
the same way.

Lemma 4 (a) If RIFP proves arA from assumptions that do not contain the
predicate variable X and if P is a non-Harrop predicate of the same arity as
X , then RIFP proves ar(A[P/X ]) from the same assumptions.

(b) If RIFP proves ar(A[X̂/X ]) from assumptions that do not contain the pred-
icate constant X̂ and if P is a Harrop predicate of the same arity as X , then
RIFP proves ar(A[P/X ]) from the same assumptions.

Proof. From arA using Lemma 3 we obtain (arA)[R(P)/X̃ ] and using Lemma 2 (a),
in case P is non-Harrop, we can rewrite it as ar(A[P/X ]). Similarly, we use
Lemma 3 to get (ar(A[X̂/X ]))[H(P)/X̂ ] from ar(A[X̂/X ]) and if P is Harrop by
Lemma 2 (b) we get ar(A[P/X ]).

Lemma 5 For any programs p,q and program variables a, and for any terms s, t
and object variables x,y:

(a) R(E)[t/x] = R(E[t/x]) for all expressions E

(b) (R(A)(p))[t/x,q/a] = R(A[t/x])(p[q/a]) for all formulas A

(c) (R(P)(s, p))[t/x,q/a] = R(P[t/x])(s[t/x], p[q/a]) for all predicates P

Proof. Proof: Simultaneous structural induction on A and P.
We begin with the proof of (a):
Case E = P(s), P not an abstraction (but note that R(P) may or may not be

an abstraction).

63



To prove R(E)[t/x] = R(E[t/x]), we begin rewriting the left-hand side:

R(P(s))[t/x]
= (λb R(P)(s,b))[t/x] b is fresh
= (λb (R(P)(s,b))[t/x]) since b is fresh
= λb (R(P[t/x])(s[t/x],b)) by i.h. (c)

On the right-hand side:

R((P(s))[t/x])
= R(P[t/x](s[t/x])) Lemma (P(s))[t/x] = P[t/x](s[t/x])
= λb (R(P[t/x])(s[t/x],b)) b is fresh

Case E = A�B, where � stands for ∧,∨,→.
We need to show R(A�B)[t/x] = R(A�B[t/x]). Since R(A�B)[t/x] is equal to
λb (R(A�B)(b))[t/x], R(A�B[t/x]) is equal to λb (R(A�B[t/x])(b)) and b is an
arbitrary program variable it suffices to prove these in the (b) version. The same
applies to the case E = �y A, where � ∈ {∀,∃}.

Now we prove (b):
Case A = P(s), P not an abstraction.

To prove (R(A)(p))[t/x,q/a] = R(A[t/x])(p[q/a]) we start with the left-hand side:

(R(P(s))(p))[t/x,q/a]
= ((λb R(P)(s,b))(p))[t/x,q/a] b is fresh
= (R(P)(s, p))[t/x,q/a] since b is fresh
= R(P[t/x])(s[t/x], p[q/a]) by i.h. (c)

On the right-hand side:

R((P(s))[t/x]))(p[q/a])
= R(P[t/x](s[t/x])))(p[q/a]) Lemma (P(s))[t/x] = P[t/x](s[t/x])
= (λb R(P[t/x])(s[t/x],b))(p[q/a]) b is fresh
= R(P[t/x])(s[t/x], p[q/a]) since b is fresh

Case A∧B, where A and B are non-Harrop.
To prove (R(A∧B)(p))[t/x,q/a] = R((A∧B)[t/x])(p[q/a]) we start with the left-
hand side:

(R(A∧B)(p))[t/x,q/a]
= (R(A)(πLt(p))∧R(B)(πRt(p)))[t/x,q/a] def. realiz.
= (R(A)(πLt(p)))[t/x,q/a]∧ (R(B)(πRt(p)))[t/x,q/a] distrib.
= R(A[t/x])(πLt(p[q/a]))∧R(B[t/x])(πRt(p[q/a])) by i.h. (b)
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On the right-hand side:

R(A∧B)[t/x]))(p[q/a])
= R(A[t/x]∧B[t/x])(p[q/a])
= R(A[t/x])(πLt(p[q/a]))∧R(B[t/x])(πRt(p[q/a]))

Case A∧B, where A is non-Harrop and B is Harrop.
To prove (R(A∧B)(p))[t/x,q/a] = R((A∧B)[t/x])(p[q/a]) we start with the left-
hand side:

(R(A∧B)(p))[t/x,q/a]
= (R(A)(p)∧H(B))[t/x,q/a] def. realiz.
= R(A[t/x])(p[q/a])∧H(B[t/x]) by i.h. (b)

On the right-hand side:

R(A∧B)[t/x]))(p[q/a])
= R(A[t/x]∧B[t/x])(p[q/a])
= R(A[t/x])(p[q/a])∧H(B[t/x])

Case A∨B, where A and B are non-Harrop.
To prove (R(A∨B)(p))[t/x,q/a] = R((A∨B)[t/x])(p[q/a]) we start with the left-
hand side:

(R(A∨B)(p))[t/x,q/a]

= (∃b(p = Lt(b)∧R(A)(b))∨∃c(p = Rt(c)∧R(B)(c)))[t/x,q/a] def. realiz.

= (∃b(p = Lt(b)∧R(A)(b)))[t/x,q/a]∨ (∃c(p = Rt(c)∧R(B)(c)))[t/x,q/a] distrib.

= ∃b((p[q/a]) = Lt(b)∧R(A[t/x])(b))∨∃c((p[q/a]) = Rt(c)∧R(B[t/x])(c)) by i.h. (b)

b, c arbitrary

On the right-hand side:

R(A∨B)[t/x]))(p[q/a])

= R(A[t/x]∨B[t/x])(p[q/a]) distrib.

= ∃b((p[q/a]) = Lt(b)∧R(A[t/x])(b)∨∃c((p[q/a]) = Rt(c)∧R(B[t/x]))(c) def. realiz.

Case A→ B, where A and B are non-Harrop.
To prove (R(A→ B)(p))[t/x,q/a] = R((A→ B)[t/x])(p[q/a]) we start with the left-
hand side:

(R(A→ B)(p))[t/x,q/a]
= (∀b(R(A)(b)→ R(B)(p b)))[t/x,q/a] def. realiz.
= ∀b′(R(A)(b)→ R(B)(p b))[t/x,q/a,b′/b]
= ∀b′(R(A[t/x])(b′)→ R(B[t/x])((p[q/a]) b′)) subst.
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On the right-hand side:

R((A→ B)[t/x]))(p[q/a])
= R(A[t/x]∨B[t/x])(p[q/a]) distrib.
= ∀b′(R(A[t/x])(b′)→ R(B[t/x])((p[q/a]) b′)) def. realiz.

Case �y A, where � ∈ ∀,∃ A is non-Harrop.
To prove (R(�y A)(p))[t/x,q/a] = R((�y A)[t/x])(p[q/a]) we start with the left-
hand side:

(R(�y A)(p))[t/x,q/a]
= � y′ R(A[y′/y])(p)[t/x,q/a] def. realiz.
= � y′ R(A[y′/y, t/x])(p[q/a]) by i.h. (b)

On the right-hand side:

R((�y A)[t/x])(p[q/a])
= R(�y′ A[y′/y, t/x])(p[q/a]) subst.
= � y′ R(A[y′/y, t/x])(p[q/a]) def. realiz.

Now we prove (c):
Case P is a constant.
To prove (R(P)(s, p))[t/x,q/a] = R(P[t/x])(s[t/x], p[q/a]) we begin with the left-
hand side:

(R(P)(s, p))[t/x,q/a]
= (P(s, p))[t/x,q/a]
= P[t/x](s[t/x], p[q/a])

Right-hand side: R(P[t/x])(s[t/x], p[q/a]) = P[t/x](s[t/x], p[q/a]) by the definition
of realizers.

Case P is a variable X .
To prove (R(P)(s, p))[t/x,q/a] = R(P[t/x])(s[t/x], p[q/a]) we begin with the left-
hand side:

(R(X)(s, p))[t/x,q/a]
= (X̃(s, p))[t/x,q/a]
= X̃ [t/x](s[t/x], p[q/a])

Right-hand side: R(X [t/x])(s[t/x], p[q/a]) = X̃ [t/x](s[t/x], p[q/a]) by the definition
of realizers.
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Case P = λy A, where w.l.o.g y not free in t.
To prove (R(P)(s, p))[t/x,q/a] = R(P[t/x])(s[t/x], p[q/a]) we begin with the left-
hand side:

(R(λy A)(s, p))[t/x,q/a]
= ((λ (y,b) R(A)(b))(s, p))[t/x,q/a] b fresh
= (R(A)[s/y](p))[t/x,q/a] since b is fresh
= (R(A[s/y])(p))[t/x,q/a] by i.h (a)
= R((A[s/y])[t/x])(p[q/a]) by i.h. (b)
= R(A[t/x,s[t/x]/y])(p[q/a]) Lemma (A[s/y])[t/x] = A[t/x,s[t/x]/y]

Right-hand side:

(R(λy A[t/x])(s[t/x], p[q/a])) (y not free in t)
=((λ (y,b) R(A[t/x])(b))(s[t/x], p[q/a])) b fresh
=R(A[t/x])(b)[s[t/x]/y, p[q/a]/b]
=R(A[t/x][s[t/x]/y])([p[q/a]/b]) by i.h. b
=(A[t/x,s[t/x]/y])(p[q/a]) since b is fresh

Case P = �(λX Q), where � stands for µ or ν; P non-Harrop, i.e. Q[X̂/X ] non-
Harrop. To prove (R(P)(s, p))[t/x,q/a] = R(P[t/x])(s[t/x], p[q/a]) we proceed on
the left-hand side:

(R(�(λXQ))(s, p))[t/x,q/a]
= (�(λ X̃ R(Q)))(s, p))[t/x,q/a]
= (�(λ X̃(R(Q)[t/x])))(s[t/x], p[q/a]) since �(λ X̃ R(Q)) is not an abstraction
= (�(λ X̃ R(Q[t/x])))(s[t/x], p[q/a]) by i.h. (a)

On the right-hand side:

R((�(λX Q))[t/x])(s[t/x], p[q/a])
= (�(λ X̃ R(Q)))[t/x])(s[t/x], p[q/a])
= � (λ X̃ R(Q)[t/x])(s[t/x], p[q/a])
= � (λ X̃ R(Q[t/x]))(s[t/x], p[q/a]) by i.h. (a)

Case P = �(λX Q), where � stands for µ or ν; P Harrop, i.e. Q[X̂/X ] Harrop.
To prove (R(P)(s, p))[t/x,q/a] = R(P[t/x])(s[t/x], p[q/a]) we rewrite the left-hand
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side first:

(H(�(λX Q))(s)∧ p = Nil)[t/x,q/a]
= (�(λX HX(Q))(s)∧ p = Nil)[t/x,q/a]
= � (λX(HX(Q)[t/x]))(s[t/x])∧ p[q/a] = Nil
= � (λX(HX(Q[t/x])))(s[t/x])∧ p[q/a] = Nil by (a)

The right-hand side:

R((�(λX Q))[t/x])(s[t/x], p[q/a])
= R(�(λX (Q[t/x])))(s[t/x], p[q/a]) since λX (Q[t/x]) is still Harrop
= � (λX HX(Q[t/x])))(s[t/x])∧ p[q/a] = Nil

The correlation between the IFP and RIFP with respect to free object, predi-
cate and program variables, is shown in the following lemma.

Lemma 6 For each IFP-expression E:

(a) FObV (R(E)) = FObV (E)

(b) FPredV (R(E)) = {X̃ |X ∈ FPredV (E)}
(c) FProgV (R(E)) = /0

Note that if E is a formula, then for all programs p:

(a*) FObV (R(E)(p)) = FObV (R(E)) = FObV (E)

(b*) FPredV (R(E)(p)) = FPredV (R(E)) = {X̃ |X ∈ FPredV (E)}

Proof. The proof is straightforward by induction on E. Here we include several
chosen cases.

For (a):
Case E = X , where X is a predicate variable. Then R(X) = X̃ is again a predi-

cate variable. But FObV (X̃) = /0 = FObV (X).

Case E = λx A. We show FObV (R(λx A)) = FObV (λx A). On the left hand
side:

FObV (R(λx A))
= FObV (λ (x,a) R(A)(a)) def. realiz.
= FObV (R(A)(a))\{x} a is prog. var.
= FObV (A)\{x} by i.h.
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On the right-hand side we have FObV (λx A), which by definition of free vari-
ables is also equal to FObV (A)\{x}.

For case (a*) we consider R(E) applied to a program (s, p) where s is a vector
of object terms of suitable length.

Case E = A∧B. We need to show that FObV (R(A∧B)(p)) = FObV (A∧B).

FObV (R(A∧B)(p))
FObV (R(A)(πLt(p))∧R(B)(πRt(p))) def. realiz.

= FObV (R(A)(πLt(p)))∪FObV (R(B)(πRt(p))) def. free var.
= FObV (A)∪FObV (B) by i.h.

Based on the definition of free variables, FObV (A∧B) corresponds to the latter.

For (b):
Case E = X , where X is a predicate variable. FPredV (R(E))=FPredV (R(X))=

{X̃}. But also FPredV (X) = {X̃}.

Case E = � (λY Q), where � stands for µ or ν; E non-Harrop, i.e. Q[X̂/X ]

non-Harrop. We show FPredV (R(� (λY Q))) = {X̃ | X ∈ FPredV (� (λY Q))}. On
the left hand side:

FPredV (R(� (λY Q)))

= FPredV (� R(λY Q)) def. realiz.
= FPredV (R(λY Q)) def. free var.
= FPredV (λỸ R(Q)) def. realiz.

= FPredV (R(Q))\ ˜{Y}
= {X̃ | X ∈ FPredV (Q)}\ ˜{Y} by i.h.

{X̃ | X ∈ FPredV (λY Q)} = {X̃ | X ∈ (FPredV (Q)\{Y})} by the definition of
free variables. Since {Ỹ |Y ∈ {Y}}, then {X̃ | X ∈ FPredV (Q)} \ {Ỹ} = {X̃ | X ∈
(FPredV (Q)\{Y})}.

For case (b*) we consider R(E) applied to a program (s, p) where s is a vector
of object terms of suitable length.
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Case E = A∧B. We show FPredV (R(A∧B)(p)) = {X̃ | X ∈ FPredV (A∧B)}.

FPredV (R(A∧B)(p))
FPredV (R(A)(πLt(p))∧R(B)(πRt(p))) def. realiz.

= FPredV (R(A)(πLt(p)))∪FPredV (R(B)(πRt(p))) def. free var.
= {X̃ | X ∈ FPredV (A)}∪{X̃ | X ∈ FPredV (B)} by i.h.

Based on the definition of free variables, {X̃ | X ∈ FPredV (A∧B)} = {X̃ | X ∈
FPredV (A)∪FPredV (B)}, which can also be represented as {X̃ | X ∈FPredV (A)}∪
{X̃ | X ∈ FPredV (B)}.

For (c) the proof is straightforward since R(E) = λa R(E)(a) for all E, so the
only program variable is bound. Hence, we conclude that FProgV (E) = /0.

1. ( f−1 ◦Q)(~x,a) Def
= Q(~x, f a)

2. ( f ◦Q)(~x,b) Def
= ∃a( f a = b∧Q(~x,a))

3. (b−1 ∗Q)(~x) Def
= Q(~x,b)

4. (a∗P)(~x,b) Def
= a = b∧P(~x)

5. ∆(P)(~x,b) Def
= P(~x)

6. ∃(Q)(~x) Def
= ∃aQ(~x,a)

7. f ◦g Def
= λa( f (g a))

Figure 10.1: Monotone predicate transformers

We define a number of monotone predicate transformers and prove equiva-
lences and statements, which are required to proceed with the proofs for induc-
tion and coinduction as shown in fig. 10.1. Q is a predicate of arity (~ι ,δ). P is a
predicate of arity (~ι). f ,a,b : δ are domain elements; ( f a) denotes application
in D.
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The following lemmas present general equivalences, adjunctions as well as
realizability equivalences.

Lemma 7 Equivalences.

(a) f−1 ◦ (g−1 ◦Q)≡ (g◦ f )−1 ◦Q

(b) f ◦ (g◦Q)≡ ( f ◦g)◦Q

(c) a−1 ∗ ( f−1 ◦Q)≡ ( f a)−1 ∗Q

(d) f ◦ (a∗P)≡ ( f a)∗P

(e) f−1 ◦∆P≡ ∆P

(f) ∃( f ◦Q)≡ ∃(Q)

(g) f−1 ◦P ∩ g−1 ◦Q≡ 〈 f ,g〉−1 ◦ (πLt
−1 ◦P ∩ πRt

−1 ◦Q)

(h) f ◦P ∪ g◦Q≡ [ f +g]◦ (Lt◦P ∪ Rt◦Q)

(i) (b−1 ∗Q) ∩ P≡ b−1 ∗ (Q ∩ ∆P)

Adjunctions.

(j) Q⊆ f−1 ◦ Q′↔ f ◦ Q⊆ Q′

(k) P⊆ b−1 ∗Q↔ b∗P⊆ Q

(l) Q⊆ ∆P↔∃(Q)⊆ P

Proof. In this proof we use definitions from fig. 10.1. We begin with the equiv-
alences. In order to prove them, we need to apply the same arguments to both
sides.

To prove the equivalence (a) f−1 ◦ (g−1 ◦Q) ≡ (g◦ f )−1 ◦Q we apply (~x,a) to
both sides. We start with the left-hand side:

( f−1 ◦ (g−1 ◦Q))(~x,a)

≡ (g−1 ◦Q)(~x, f a) def. 1
≡ Q(~x,g( f a)) def. 1 and 7
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Now we proceed on the right-hand side:

((g◦ f )−1 ◦Q)(~x,a)
≡ Q(~x,(g◦ f ) a) def. 1
≡ Q(~x,g( f a)) def. 7

Hence, this equivalence statement is valid.

To prove the equivalence (b) f ◦ (g ◦Q) ≡ ( f ◦ g) ◦Q we apply (~x,b) to both
sides. First, we work on the left-hand side:

( f ◦ (g◦Q))(~x,b)
≡ ∃a′( f a′ = b∧ (g◦Q)(~x,a′)) def. 2
≡ ∃a′( f a′ = b∧∃a(g a = a′∧Q(~x,a))) def. 2
≡ ∃a( f (g a) = b∧Q(~x,a)) a′ = g a

Now, we proceed on the right-hand side:

(( f ◦g)◦Q)(~x,b)
≡ ∃a(((g◦ f ) a) = b∧Q(~x,a)) def. 2
≡ ∃a( f (g a) = b∧Q(~x,a)) def. 7

Hence, both sides can be transformed into the same form, making this equiva-
lence statement valid.

To prove the equivalence (c) a−1 ∗ ( f−1 ◦Q)≡ ( f a)−1 ∗Q we apply (~x) to both
sides. We proceed on the left-hand side first:

(a−1 ∗ ( f−1 ◦Q))(~x)

≡ ( f−1 ◦Q)(~x,a) def. 3
≡ Q(~x,( f a)) def. 1

Now, on the right-hand side (( f a)−1 ∗Q)(~x) is equivalent to Q(~x,( f a)) def. 3.
Hence, the equivalence statement (c) is valid.
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To prove the equivalence (d) f ◦(a∗P)≡ ( f a)∗P we apply (~x,b) to both sides.
The left-hand side:

( f ◦ (a∗P))(~x,b)
≡ ∃c( f c = b∧ (a∗P)(~x,c)) def. 2
≡ ∃c( f c = b∧ (a = c∧P(~x)) def. 4
≡ f a = b∧P(~x) c = a

Now, we proceed on the right-hand side. def. 4, (( f a)∗P)(~x,b) is equivalent
to f a = b∧P(~x)). Hence, this equivalence statement is valid.

To prove the equivalence (e) f−1 ◦∆P≡ ∆P we apply (~x,b) to both sides. We
proceed on the right-hand side:

f−1 ◦∆(P)(~x,b)
≡ ∆(P)(~x, f b) def. 1
≡ (P)(~x) def. 5

On the left-hand side, def. 5, ∆(P)(~x,b) is equivalent to P(~x). Hence, the
equivalence statement (e) is valid.

To prove the equivalence (f) ∃( f ◦Q) ≡ ∃(Q) we apply (~x) to both sides. On
the left-hand side:

∃( f ◦Q)(~x)
≡ ∃b( f ◦Q)(~x,b) def. 6
≡ ∃b(∃a( f a = b∧Q(~x,a)) def. 2
≡ ∃a(Q(~x,a)) b = f a

On the right-hand side ∃(Q)(~x) ≡ ∃a(Q)(~x,a) def. 6. Hence, the equivalence
statement (f) is valid.

To prove the equivalence (g) f−1 ◦P ∩ g−1 ◦Q≡ 〈 f ,g〉−1 ◦(πLt
−1 ◦P ∩ πRt

−1 ◦
Q) we apply (~x,a) to both sides. def. 1 the left-hand side is equivalent to
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P(~x, f a) ∧ Q(~x,g a). On the right hand-side we have the following:

(〈 f ,g〉−1 ◦ (πLt
−1 ◦P ∩ πRt

−1 ◦Q))(~x,a)

≡ (πLt
−1 ◦P ∩ πRt

−1 ◦Q)(~x,〈 f ,g〉 a) def. 1

≡ (πLt
−1 ◦P)(~x,〈 f ,g〉 a)∧ (πRt

−1 ◦Q)(~x,〈 f ,g〉 a) def. intersection
≡ P(~x,πLt(〈 f ,g〉 a)) ∧ Q(~x,πRt(〈 f ,g〉 a)) def. 1
≡ P(~x, f a) ∧ Q(~x,g a) def. of proj. and def. 〈 f ,g〉

Hence, the equivalence statement (g) is valid.

To prove the equivalence (h) f ◦P ∪ g◦Q≡ [ f +g]◦(Lt◦P ∪ Rt◦Q) we apply
(~x,b) to both sides. We begin with the left-hand side:

( f ◦P ∪ g◦Q)(~x,b)
≡ ∃a( f a = b∧P(~x,a)) ∨ ∃a(g a = b∧Q(~x,a)) def. 2

Now, we proceed on the right-hand side:

([ f +g]◦ (Lt◦P ∪ Rt◦Q))(~x,b)
≡ ∃a([ f +g] a = b∧ (Lt◦P ∪ Rt◦Q)(~x,a)) def. 2
≡ ∃a([ f +g] a = b∧ (∃a′(Lt a′ = a∧P(~x,a′)) ∨ ∃b′(Rt b′ = a∧Q(~x,b′)))) def. 2

By distributivity, the last statement can be rewritten as follows:

∃a([ f +g] a= b∧∃a′(Lt a′= a∧P(~x,a′))) ∨ ∃a([ f +g] a= b∧∃b′(Rt b′= a∧Q(~x,b′))))

The left side of this disjunction, can be rewritten as ∃a([ f + g](Lt a′) = b∧
P(~x,a′)), which is equivalent to ∃a(( f a′)= b∧P(~x,a′)). Similarly, we get ∃b′((g b′)=
b∧Q(~x,b′)) on the right side of the disjunction. Now if we substitute a′ and b′ by
a then both sides of we see that this equivalence is valid.

To prove the equivalence (i) (b−1 ∗Q) ∩ P ≡ b−1 ∗ (Q ∩ ∆P) we apply (~x) to
the left-hand side:

(b−1 ∗Q)(~x)∧P(~x)
≡ Q(~x,b)∧P(~x) def. 3 and 5

Now, on the right-hand side we also apply (~x):

(b−1 ∗ (Q∩∆P))(~x)
≡ (Q∩∆P)(~x,b) def. 3
≡ Q(~x,b)∧P(~x) def. 3 and 5
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Therefore, both sides are equivalent.
We now procees with the proof of the adjunctions.
For the adjunction (j) Q ⊆ f−1 ◦ Q′↔ f ◦ Q ⊆ Q′ we look at the left-hand

side inclusion first and apply (~x,a) to it:

∀~x,a(Q(~x,a)→ ( f−1 ◦ Q′)(~x,a))
≡ ∀~x,a(Q(~x,a)→ Q′(~x, f a)) def. 1

Now we look at the right-hand side inclusion and apply (~x,b) to it:

∀~x,b(( f ◦ Q)(~x,b)→ Q(~x,b))
≡ ∀~x,b(∃a( f a = b∧Q(~x,a))→ Q(~x,b)) def. 2
= ∀~x(∃a(Q(~x,a))→ Q(~x, f a)) let b = f a
≡ ∀~x,a(Q(~x,a)→ Q′(~x, f a)) since (∃a Q(a)→ B)↔∀a (Q(a)→ B)

Hence, both inclusions can be transformed into the same form, making this ad-
junction valid.

For the adjunction (k) P ⊆ b−1 ∗Q↔ b ∗P ⊆ Q we look at the left-hand side
inclusion first and apply (~x) to it:

∀~x(P(~x)→ b−1 ∗Q(~x))
≡ ∀~x(P(~x)→ Q(~x,b)) def. 3

Now we look at the right-hand side inclusion and apply (~x,b) to it:

∀~x,b((b∗P)(~x,b)→ Q(~x,b))
≡ ∀~x(P(~x)→ Q(~x,b)) def. 4; b = b

Hence, both inclusions can be transformed into the same form, making this
adjunction valid.

For the adjunction (l) Q⊆ ∆P↔∃(Q)⊆ P we look at the left-hand side inclu-
sion first and apply (~x,a) to it:

∀~x,a(Q(~x,a)→ ∆(P)(~x,a))
≡ ∀~x,a(Q(~x,a)→ P(~x)) def. 5
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Now we look at the right-hand side inclusion and apply (~x) to its both sides:

∀~x(∃(Q)(~x)→ P(~x))
≡ ∀~x(∃a(Q)(~x,a)→ P(~x)) def. 4
≡ ∀~x,a(Q(~x,a)→ P(~x)) since (∃a Q(a)→ B)↔∀a (Q(a)→ B)

Hence, both inclusions can be transformed into the same form, making this
adjunction valid.

In the following lemma and the soundness theorem we use the notation arA
to denote R(A)(a) for convenience.

Lemma 8 Realizability. Let Q and Q′ be non-Harrop predicates, P and P′ Harrop
predicates, f a function and a a variable:

(a) f r(Q⊆ Q′)↔ R(Q)⊆ f−1 ◦R(Q′)↔ f ◦R(Q)⊆ R(Q′)

(b) ar(P⊆ Q)↔H(P)⊆ a−1 ∗R(Q)↔ a∗H(P)⊆ R(Q)

(c) H(Q⊆ P)↔ R(Q)⊆ ∆H(P)↔∃(R(Q))⊆H(P)

(d) H(P⊆ P′)↔H(P)⊆H(P′)

(e) R(Q ∩ Q′)≡ πLt
−1 ◦R(Q) ∩ πRt

−1 ◦R(Q′)

(f) R(Q ∪ Q′)≡ Lt◦R(Q) ∪ Rt◦R(Q′)

(g) R(Q ∩ P)≡ R(Q) ∩ ∆(H(P))

(h) ∃(R(Q))∪H(P)≡ ∃(R(Q∪P))

Proof. In this proof we use definitions from fig. 10.1.

For the statement (a) f r(Q ⊆ Q′)↔ R(Q) ⊆ f−1 ◦R(Q′)↔ f ◦R(Q) ⊆ R(Q′)
we start with the first part and write out its equivalents:

f r(Q⊆ Q′)
≡ f r(∀~x(Q(~x)→ Q′(~x)) unfolding ⊆
≡ ∀~x f r(Q(~x)→ Q′(~x)) def. f r∀~x Q(~x)
≡ ∀~x (∀a (arQ(~x)→ ( f a)rQ′(~x))) def. f r(Q→ Q′)
≡ ∀~x,a (R(Q)(~x,a)→ R(Q′)(~x, f a)) def. R
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Now we unfold the definition of ⊆ in R(Q) ⊆ f−1 ◦R(Q′) and apply (~x,a) to
it:

∀~x,a (R(Q)(~x,a)→ f−1 ◦R(Q′)(~x,a))
≡ ∀~x,a (R(Q)(~x,a)→ R(Q′)(~x, f a)) def. 1

Lastly, we transform f ◦R(Q) ⊆ R(Q′) in a similar way, applying arbitrary
(~x,b) to it to obtain the following equivalent statements:

∀~x,b ( f ◦R(Q)(~x,b)→ R(Q′)(~x,b))
≡ ∀~x (∃a (R(Q)(~x,a))→ R(Q′)(~x, f a)) def. 2, b = f a
≡ ∀~x,a (R(Q)(~x,a)→ R(Q′)(~x, f a)) since (∃a Q(a)→ B)↔∀a (Q(a)→ B)

Hence, all three parts of the statement (a) can be transformed into the same
form.

For the statement (b) ar(P⊆ Q)↔H(P)⊆ a−1 ∗R(Q)↔ a∗H(P)⊆ R(Q) we
look at the first part of the statement and produce its equivalents:

ar(P⊆ Q)

≡ ar(∀~x(P(~x)→ Q(~x))) unfolding ⊆
≡ ∀~x ar(P(~x)→ Q(~x))) def. ar∀~x Q(~x)
≡ ∀~x (H(P)(~x)→ arQ(~x)) since P is Harrop

Now if we unfold the definition of ⊆ in H(P)⊆ a−1 ∗R(Q) and apply (~x) to it:

∀~x (H(P)(~x)→ a−1 ∗R(Q)(~x))
≡ ∀~x (H(P)(~x)→ R(Q)(~x,a)) def. 3
≡ ∀~x (H(P)(~x)→ arQ(~x)) def. of R(Q)(~x,a)

Lastly, we transform a ∗H(P) ⊆ R(Q) in a similar way, applying (~x,b) to it to
obtain the following equivalent statements:

∀~x,b (a∗H(P)(~x,b)→ R(Q)(~x,b))
≡ ∀~x,b (a = b∧H(P)(~x)→ R(Q)(~x,b)) def. 4
≡ ∀~x (H(P)(~x)→ R(Q)(~x,a)) let b = a

Hence, all three parts of the statement (b) can be transformed into the same
form.
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Now for the statement (c) H(Q⊆ P)↔ R(Q)⊆ ∆H(P)↔∃(R(Q))⊆H(P) we
know that H(Q⊆ P) stands for ∀~x (∃a (arQ(~x))→H(P)(~x)) (by the definition of
realizability since Q is non-Harrop and P is Harrop).

Now if we unfold the definition of ⊆ and apply arbitrary (~x,a) to R(Q) ⊆
∆H(P), so we obtain the following equivalent formulas:

∀~x,a (R(Q)(~x,a)→ ∆(H(P))(~x,a))
≡ ∀~x,a (R(Q)(~x,a)→H(P)(~x)) def. 5
≡ ∀~x (∃a (arQ(~x))→H(P)(~x)) def. of R(Q)(a) and

since (∃a Q(a)→ B)↔∀a (Q(a)→ B)

Lastly, we transform ∃(R(Q)) ⊆ H(P) by unfolding the definition of ⊆ and
applying (~x) to both sides of the implication:

∀~x (∃(R(Q))(~x)→H(P)(~x))
≡ ∀~x (∃a (R(Q))(~x,a)→H(P)(~x)) def. 6
≡ ∀~x (∃a (arQ(~x))→H(P)(~x)) def. of R(Q)(a)

Hence, all three parts of the statement (c) can be transformed into the same
form.

For the statement (d) H(P ⊆ P′)↔ H(P) ⊆ H(P′) we know that H(Q ⊆ P)
stands for ∀~x (H(P)(~x)→H(P′)(~x)) (by the definition of realizability and since P
and P′ are Harrop). On right-hand side, if we rewrite the inclusion H(P)⊆H(P′),
by the definition of inclusion, we also obtain ∀~x (H(P)(~x)→H(P′)(~x)).

For the statement (e) R(Q ∩ Q′)≡ πLt
−1 ◦R(Q) ∩ πRt

−1 ◦R(Q′), firstly, we
work with the left-hand side:

(R(Q ∩ Q′))(~x,c)
≡ cr((Q ∩ Q′)(~x)) def. of R
≡ cr(Q(~x)∧ Q′(~x)) by distributivity
≡ (πLtc)rQ(~x)∧ (πRtc)rQ′(~x) def. crQ∧Q′

Now we proceed with the right-hand side πLt
−1 ◦R(Q) ∩ πRt

−1 ◦R(Q′), unfold-
ing the definition of an intersection and applying (~x,c) to the both sides of the
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conjunction:

(πLt
−1 ◦R(Q))(~x,c)∧ (πRt

−1 ◦R(Q′))(~x,c)
≡ R(Q)(~x,(πLtc))∧R(Q′)(~x,(πRtc)) def. 1
≡ (πLtc)rQ(~x)∧ (πRtc)rQ′(~x) def. of R

Therefore, we can conclude that the statement (e) holds.
For the statement (f) R(Q ∪ Q′) ≡ Lt ◦R(Q) ∪ Rt ◦R(Q′) we first proceed

with the left-hand side and apply (~x,c):

R(Q ∪ Q′)(~x,c)
≡ cr(Q ∪ Q′)(~x) def. of R
≡ cr(Q(~x)∨Q′(~x)) unfolding def. of ∩
≡ ∃a (c = Lt(a)∧R(Q)(~x,a))∨∃b (c = Rt(b)∧R(Q′)(~x,b)) def. crQ∨Q′

Now we proceed with the right-hand side Lt◦R(Q) ∪ Rt◦R(Q′), unfolding the
definition of an intersection and applying (~x,c) to it:

(Lt◦R(Q))(~x,c)∨ (Rt◦R(Q′))(~x,c)
≡ ∃a (Lt(a) = c∧R(Q)(~x,a))∨∃b (Rt(b) = c∧R(Q′)(~x,b)) def. 2

Since Lt(a) = c and c = Lt(a) are equivalent, we can conclude that the statement
R(Q ∪ Q′)≡ Lt◦R(Q) ∪ Rt◦R(Q′) holds.

For the statement (g) R(Q ∩ P) ≡ R(Q) ∩ ∆(H(P)), firstly, we work with
the left-hand side:

R(Q ∩ P)(~x,a)
≡ ar(Q ∩ P)(~x) def. of R
≡ ar(Q(~x) ∧ P(~x)) unfolding def. of ∩
≡ arQ(~x)∧H(P)(~x) def. arQ∧P

Now we proceed with the right-hand side R(Q) ∩ ∆(H(P)), unfolding the
definition of an intersection and applying (~x,a) to the both sides of the conjunc-
tion:

R(Q)(~x,a)∧∆H(P)(~x,a)
≡ arQ(~x)∧H(P)(~x) def. of R and ∆H

Therefore, we can conclude that the statement (g) holds.
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To prove item (h), ∃(R(Q))∪H(P) ≡ ∃(R(Q∪P)), we proceed with the left-
hand side:

∃(R(Q))∪H(P)
= λx (∃(R(Q))(x)∨H(P)(x))
= λx(∃a R(Q)(x,a)∨H(P)(x))

On the right-hand side:

∃(R(Q∪P))
= λx ∃c R(λy(Q(y)∨P(y)))(x,c)
= λx ∃c ((λ (y,a) R(Q(y)∨P(y))(a))(x,c))
= λx ∃c (R(Q(x)∨P(x))(c))
= λx ∃c (∃a (c = Lt(a)∧R(Q(x))(a))∨∃b (c = Lt(b)∧R(P(x))(b)))
= λx ∃c (∃a (c = Lt(a)∧R(Q(x))(a))∨∃b (c = Lt(b)∧H(P(x))∧b = Nil))
≡ λx ∃c (∃a (c = Lt(a)∧R(Q(x))(a))∨ (c = Lt(Nil)∧H(P(x))))
≡ λx (∃a R(Q(x))(a)∨H(P(x))

The last two equivalences follow by easy equality reasoning.

As mentioned earlier, in this thesis we are proving an IFP’ version of sound-
ness. In a general sense, the theorem corresponds to the IFP version of sound-
ness, where IFP proofs are replaced by the IFP’ proofs. To ensure that IFP is
indeed embedded in IFP’, we prove the following two lemmas about monotonic-
ity of s.p. operators in IFP’ as well as the actual embedding lemma.

Lemma 9 IFP’ proves that every strictly positive operator is monotone.

Proof. We show that for every s.p. operator Φ:

(a) IFP’ proves Mon(Φ)1, i.e., X ⊆ Y → Φ(X) ⊆ Φ(Y ), where X ,Y are different
predicate variables that are not free in Φ.

(b) Simultaneously, we prove that IFP’ proves

(i) X ⊆ Y → P⊆ P[Y/X ] and
1The algorithm that produces for each s.p. operator Φ the proof of Lemma 9(a) is part of the

extraction procedure implemented in our proof assistant.
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(ii) X ⊆ Y → A→ A[Y/X ],

where P resp. A range over predicates resp. formulas that are s.p. in X and
do not contain Y free.

The proof is by simultaneous induction on the syntactic complexity of Φ, P and
A. For most cases the proof is straightforward, so here we present the most
interesting cases, namely (b), where P is defined by induction or coinduction.

Firstly, we define MonX(P) as X ⊆ X ′→ P⊆ P[X ′/X ], where X ′ is a fresh vari-
able accompanied with X . This means that for the operator Φ = λX P, Mon(Φ) is
equivalent to MonX(P). Hence, we proceed by structural induction on P. Assume
MonY (Q) holds for every subterm Q of P and every variable Y . We need to show
MonX(P).

Case P = µ(λY Q). Assume X ⊆ X ′. Show µ(λY Q) ⊆ µ(λY Q[X ′/X ]). We
also assume that Y 6∈ {X ,X ′}. Using IFP’ induction on µ(λY Q), we transform
the goal and need to show that (i) Q[µ(λY Q[X ′/X ])/Y ] ⊆ µ(λY Q[X ′/X ]) and
(ii) Mon(λY Q), i.e. MonY (Q). The statement of (ii) holds by the i.h., and
MonX Q also holds. Hence, Q ⊆ Q[X ′/X ]. By Lemma 3, Q[µ(λY Q[X ′/X ])/Y ] is
a subset of Q[X ′/X ][µ(λY Q[X ′/X ])/Y ]. Moreover, Q[X ′/X ][µ(λY Q[X ′/X ])/Y ] ⊆
µ(λY Q[X ′/X ]) by closure. Hence, (i) holds.

Case P = ν(λY Q). Here the argument is completely dual if we replace MonX P
by the equivalent formula X ′ ⊆ X → P[X ′/X ]⊆ P.
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Lemma 10 (Embedding). If Γ `IFP A, then Γ `IFP′ A.

Proof. Proof by induction on the IFP derivation of A. For most rules the assertion
follows trivially from the induction hypotheses. We present the most interesting
cases.

IND. Assume µ(Φ) ⊆ P has been derived in IFP by induction, that is, from a
(shorter) IFP proof of Φ(P) ⊆ P. By induction hypothesis IFP’ proves Φ(P) ⊆ P.
Furthermore, by lemma 9, IFP’ proves Mon(Φ). Hence, by the rule IND’, IFP’
proves µ(Φ)⊆ P.

COIND. Assume P ⊆ ν(Φ) has been derived in IFP by coinduction, that is,
from a (shorter) IFP proof of P ⊆ Φ(P). Similarly to the above case, since IFP’
proves P⊆Φ(P) and Mon(Φ), by the COIND’ rule, IFP’ proves P⊆ ν(Φ).

The remaining variations of induction and coinduction are proven in a similar
way.

Now we can begin proving the Soundness Theorem. Here we continue using
infix notation arA for readability. We use~arΓ as a shorthand for a1 rΓ1 . . .an rΓn.

Theorem 1 If A can be derived from ∆ and Γ in IFP’, where ∆ is a set of Harrop
formulas and Γ is a set of non-Harrop formulas, then for every vector of distinct
program variables ~a of the same length as Γ, there exists a program p with
FV(p)⊆~a, such that H(∆),~arΓ `RIFP prA.

Proof. By induction on the length of IFP’ derivations.
We fix vector ~a of program variables of the same length as Γ.

Use rule. Assume ∆,Γ `IFP’ A, where A ∈ Γ in case A is non-Harrop or A ∈ ∆

in case A is Harrop. We show H(∆),~arΓ `RIFP srA for some s. For the non-
Harrop case there is arA ∈ ~arΓ, we apply the use rule and set s = a to obtain
H(∆),~arΓ `RIFP arA. In the Harrop case s = Nil and the proof is using the same
approach.

For the axiom application the proof is straightforward as our axioms are al-
ways Harrop.

We first look at the introduction rules.

∧+. Assume ∆,Γ`IFP’ (A∧B) has been derived from ∆,Γ`IFP’ A and ∆,Γ`IFP’ B.
We proceed by looking at the different cases based on whether the sub-

formulas are Harrop or non-Harrop.
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If both A and B are non-Harrop, we need to show that H(∆),~arΓ `RIFP sr(A∧
B) for some s. Since neither A nor B are Harrop by definition of realizability
sr(A∧B) = (πLts)rA∧ (πRts)rB. By i.h. we know that H(∆),~arΓ `RIFP prA and
H(∆),~arΓ `RIFP qrB . So, using ∧+, we get sr(A∧B), where s = Pair(p,q) since
πLts = p and πRts = q.

If both A and B are Harrop, it suffices to show that H(∆),~arΓ `RIFP H(A∧B).
By definition of realizability H(A∧B) = H(A)∧H(B)). By i.h. we know that
H(∆),~arΓ `RIFP H(A) and H(∆),~arΓ `RIFP H(B). Hence, by ∧+, H(A∧B) holds.

If A is Harrop and B is non-Harrop, we need to show that H(∆),~arΓ `RIFP
sr(A∧B) for some s. By definition of realizability, it suffices to show H(A)∧ srB.
By i.h. we know that H(∆),~arΓ `RIFP H(A) and H(∆),~arΓ `RIFP qrB. Hence, by
∧+, s = q and qr(A∧B).

If A is non-Harrop and B is Harrop, using the same approach we show pr(A∧
B) from i.h. H(∆),~arΓ `RIFP prA and H(∆),~arΓ `RIFP H(B).

∨+l . Assume ∆,Γ `IFP’ (A∨B) has been derived from ∆,Γ `IFP’ A by ∨+l .
A disjunctive formula is always non-Harrop, regardless whether A and B are

Harrop or not. We show that H(∆),~arΓ `RIFP sr(A∨B). By definition of realiz-
ability sr(A∨B) = ∃a(s = Lt(a)∧ arA∨ s = Rt(a)∧ arB). By i.h. we know that
H(∆),~arΓ `RIFP prA , regardless of whether A is Harrop or non-Harrop. This is
because if A is Harrop, then we can set p = Nil. Hence, by ∨+, we get sr(A∨B),
where s = Lt(p). The proof for ∨+r is similar and we can show sr(A∨B), where
s = Rt(p).

→+. Assume ∆,Γ `IFP’ (A→ B) has been derived from ∆,Γ,A `IFP’ B by→+.
If both A and B are non-Harrop, we need to show that H(∆),~arΓ`RIFP sr(A→

B) for some s. We apply →+ to the i.h. H(∆),~arΓ, rA `RIFP prB and obtain
arA→ prB. Since a is not free in the remaining assumptions, we apply ∀+ and
obtain ∀a(arA→ prB). Since (λa p)a = p, we set s = λa p, so (λa p)r(A→ B).

If both A and B are Harrop, is suffices to show H(∆),~arΓ `RIFP H(A→ B).
By definition of realizability H(A→ B) = H(A)→H(B). By i.h. we know that

H(∆),~arΓ,H(A) `RIFP H(B). Hence, by→+, we get H(A→ B).

If A is Harrop and B is non-Harrop, we need to show H(∆),~arΓ `RIFP sr(A→
B) for some s. By definition of realizability, br(A→ B) = H(A)→ prB. By i.h.
H(∆),~arΓ,H(A) `RIFP prB. Hence, by→+, we get pr(A→ B) and s = p.
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If A is non-Harrop and B is Harrop by the definition H(A→ B) = (∃a arA)→
H(B). We apply →+ to the i.h. H(∆),~arΓ, rA `RIFP H(B) and obtain arA→
H(B). Since a is not free in the remaining assumptions, we apply ∀+ and obtain
∀a(arA→ H(B)). This is logically equivalent to H(∆),~arΓ, prA ` (∃a arA)→
H(B) since a is not free in H(B). Hence, we can conclude that H(A→ B) holds.

∀+. Assume ∆,Γ `IFP’ ∀x A has been derived from ∆,Γ `IFP’ A by ∀+.
If A is non-Harrop, we need to show that H(∆),~arΓ `RIFP sr(∀x A) for some s.

By definition of realizability ar(∀x A) is equal to ∀x(arA). By i.h. we know that
H(∆),~arΓ `RIFP prA, so using ∀+ (note that the variable x should not occur free
in the context in this case), we get pr(∀x A) and s = p.

If A is Harrop, we need to show that H(∆),~arΓ `RIFP H(∀x A). Since A is Har-
rop, by definition of realizability H(∀x A) = ∀x(H(A)). By i.h. we know that
H(∆),~arΓ `RIFP H(A) and using ∀+, we get H(∀x A).

∃+. Assume ∆,Γ `IFP’ ∃x A has been derived from ∆,Γ `IFP’ A[t/x] by ∃+.
If A is non-Harrop, we need to show that H(∆),~arΓ `RIFP sr(∃x A). By defini-

tion of realizability ar(∃x A) = ∃x (arA). By i.h. we know that H(∆),~arΓ `RIFP
pr(A[t/x]), which, by Lemma 5 is equivalent to (prA)[t/x], so using ∃+, we get
pr(∃x A).

If A is Harrop, we need to show that H(∆),~arΓ `RIFP H(∃x A). By definition of
realizability H(∃x A) = ∃x H(A). By i.h. we know that H(∆),~arΓ `RIFP H(A[t/x]),
which by Lemma 5 is equivalent to (H(A))[t/x], so using ∃+, we get H(∃x A).

Now for the elimination rules we proceed accordingly.

∧−l . Assume ∆,Γ `IFP’ A has been derived from ∆,Γ `IFP’ A∧B by ∧−l .
If A∧B is non-Harrop then A is also non-Harrop, so we need to show an s

such that H(∆),~arΓ `RIFP srA in case A is non-Harrop and H(∆),~arΓ `RIFP H(A)
if A is Harrop. By the i.h. we have a program p such that H(∆),~arΓ`RIFP prA∧B.

• If A and B are both non-Harrop, by the definition of realizability we have
pr(A∧ B) = (πLt p)rA∧ (πRt p)rB. Hence, by ∧−l , we get (πLt p)rA and
s = (πLt p).

• If A is Harrop and B is non-Harrop, by the definition of realizability we
have pr(A∧B) = H(A)∧ prB. Hence, by ∧−l , we get H(A).
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• If A is non-Harrop and B is Harrop, by the definition of realizability we have
pr(A∧B) = prA∧H(B). Hence, by ∧−l , we get (πLt p)rA and s = (πLt p).

If A∧B is Harrop, we need to show that H(∆),~arΓ `RIFP H(A). Both A and B
should also be Harrop in this case, so the definition of realizability is H(A∧B) =
H(A)∧H(B). By the induction hypothesis H(∆),~arΓ `RIFP H(A∧B). Applying the
∧−l rule, we get H(∆),~arΓ `RIFP H(A).

We prove the theorem for the ∧−r in the similar manner.

∨−. Assume ∆,Γ `IFP’ C has been derived by ∨− from (a) ∆,Γ `IFP’ A∨B,
(b) ∆,Γ `IFP’ A→ C and (c) ∆,Γ `IFP’ B→ C. If all the involved formulas are
non-Harrop, then by i.h. we have three programs q, p1 and p2, such that

• H(∆),~arΓ `RIFP qr(A∨B)

• H(∆),~arΓ `RIFP p1 r(A→C)

• H(∆),~arΓ `RIFP p2 r(B→C)

We expect that the extracted program s realizing C can be defined as s =
case q of {Lt(a)→ p1 a; Rt(b)→ p2 b}. To verify this we proceed as follows.
By realizability interpretation, we know that qrA∨B = (∃a (q = Lt(q)∧arA))∨
(∃b (q = Rt(b)∧brB)). We apply ∨− and distinguish two cases.

- Case ∃a(q = Lt(q)∧arA): Using ∃−, we may assume that q = Lt(a) and
arA for some a. Using a program axiom it follows s = p1 a. However, since
p1 r(A→B) and arA, this implies (p1 a)rC. Therefore, srC, by congruence.

- Case ∃a(q = Rt(q)∧qrB) is similar.

If one of A or B or both are Harrop, the definition of s and the proof are sim-
ilar to the above.

In case C is Harrop, it suffices to show that H(∆),~arΓ `RIFP H(C). By the
definition of realizability we know that H(�→C) = r(�)→ H(C) regardless of
whether � is Harrop or not. Here � ∈ {A,B}. Using the ∨− rule with i.h.
H(∆),~arΓ `RIFP qr(A∨B) and H(∆),~arΓ `RIFP H(�→C), we obtain our goal.

→−. Assume ∆,Γ`IFP’ B has been derived from ∆,Γ`IFP’ A→B and ∆,Γ`IFP’ A
by→−.

If B is non-Harrop, we need to show H(∆),~arΓ `RIFP srB for some s.
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If A is non-Harrop, then by the definition of realizability f r(A→ B) = ∀a(arA
→ ( f a)rB). Using the →− rule with the i.h. H(∆),~arΓ `RIFP pr(A→ B) and
H(∆),~arΓ `RIFP qrA, we get (p q)rB, so s = (p q).

In case A is Harrop, the proof is similar. We assign s = p and show that prB.

If B is Harrop, we need to show that H(∆),~arΓ `RIFP H(B). Using the→− rule
with the i.h., regardless of whether A is Harrop or not, we obtain H(∆),~arΓ `RIFP
H(B).

∀−. Assume ∆,Γ `IFP’ (A[t/x]) has been derived from ∆,Γ `IFP’ ∀x A by ∀−.
If A is non-Harrop, we need to show that H(∆),~arΓ `RIFP sr(A[t/x]). By i.h.

we know that pr(∀x A). Also, by definition of realizability pr(∀x A) = ∀x (prA).
Using ∀− rule, we get (prA)[t/x], which is equivalent to pr(A[t/x]) by Lemma 5,
so s = p.

Similarly, for case that A is Harrop we need to show that H(∆),~arΓ `RIFP
H(A[t/x]). By i.h. we know that H(∀x A), which by definition of realizability is
equal to ∀x (H(A)). Using ∀−, we get (H(A))[t/x] or, equivalently by Lemma 5,
H(A[t/x]).

∃−. Assume ∆,Γ `IFP’ B has been derived from ∆,Γ `IFP’ A→ ∃x A(x) and
∆,Γ `IFP’ ∀x(A(x)→ B) by ∃−.

If B is non-Harrop, we need to show that H(∆),~arΓ `RIFP srB. Here we look
at two subcases:

• ∃x A(x) is non-Harrop: Here by i.h. we know H(∆),~arΓ `RIFP pr(∃x A(x)),
the conclusion of which, by the definition of realizers, can be re-written as
∃x(prA(x)). Also, by i.h., H(∆),~arΓ `RIFP qr(∀x(A(x)→ B)), the conclusion
of which, by the definition of realizers, can be re-written as ∀x(qr((A(x)→
B)). This can be rewritten further as ∀x(∀a(arA(x)→ (q a)rB)) and
∀a,x(arA(x)→ (q a)rB). By ∀− with a = p, we get ∀x (prA(x)→ (q p)rB).
Using ∃−, we get (q p)rB.

• ∃x A(x) is Harrop: similar. By i.h. we know that H(∆),~arΓ `RIFP H(∃x A(x))
and H(∆),~arΓ `RIFP qr(∀x(A(x)→ B)). Since ∃x A(x) is Harrop and, conse-
quently, so is A(x), then by the definition of the realizability, this i.h. can
be rewritten as ∀x(H(A(x))→ qrB), so applying the ∃− rule we get qrB.

If B is Harrop, we need to show H(∆),~arΓ `RIFP H(B). Again, we look at two
subcases:

• ∃x A(x) is non-Harrop: by i.h. we know that H(∆),~arΓ `RIFP pr(∃x A(x)),
the conclusion of which, by the definition of realizers, can be re-written
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as ∃x(prA(x)). Since B is Harrop, then by the definition of realizers it
means that (∀x(A(x)→ B)) should also be Harrop. The conclusion of the
i.h. H(∆),~arΓ `RIFP H(∀x(A(x)→ B)), can be re-written as ∀x H(A(x)→ B)
and further as ∀x(∃a(arA(x)→H(B))). The latter is equivalent to the state-
ment ∀x ∀a(arA(x)→H(B)). Applying the ∀− rule and using substitution,
followed by the ∀+ rule, we obtain ∀x(prA(x)→H(B)). Finally, we apply
the ∃− rule to the latter and ∃x(prA(x)) to get H(B).

• ∃x A(x) is Harrop: by i.h. we know that H(∆),~arΓ `RIFP H(∃x A(x)), so by
the definition of realizability ∃x(H(A(x)). The proof is as above, where
p = Nil.

We now proceed with the proofs of soundness for different forms of induction
and coinduction.

IND’. Assume ∆,Γ`IFP’ (µ(Φ)⊆P) has been derived from ∆,Γ`IFP’ (Φ(P)⊆P)
and Mon(Φ) by IND’, where Φ(P) = Q[P/X ]. Here Mon(Φ) means X ⊆ Y → Q ⊆
Q[Y/X ]. We look at specific cases, depending on whether Φ and P are Harrop.

If Φ and P are non-Harrop:
Show:

f r(µ(Φ)⊆ P)

≡ R(µ(Φ))⊆ f−1 ◦ R(P) Lem. 8

= R(µ(λX Q))⊆ f−1 ◦ R(P) since Φ = λX Q

= (µ(λ X̃R(Q)))⊆ f−1 ◦ R(P) since R(µ(Φ)) = µ(R(Φ))

and R(λX Q) = λ X̃(R(Q))

By s.p. induction, it is enough to show

R(Q)[ f−1 ◦ R(P)/X̃ ]⊆ f−1 ◦ R(P) (10.1)

By i.h. we have sr(Φ(P)⊆ (P)), which is, by Lemma 8 equivalent to

R(Q[P/X ])⊆ s−1 ◦R(P) (10.2)

By i.h. we also have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[P/Y ]) (10.3)
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Writing out Mon(Φ)[P/Y ] we obtain X ⊆ P→ Q ⊆ Q[P/X ]. Therefore, 10.3 can
be rewritten as

∀g(gr(X ⊆ P)→ (m g)r(Q⊆ Q[P/X ]))

≡ ∀g(R(X)⊆ g−1 ◦R(P)→ R(Q)⊆ (m g)−1 ◦R(Q[P/X ])) Lem. 8

= ∀g(X̃ ⊆ g−1 ◦R(P)→ R(Q)⊆ (m g)−1 ◦R(Q[P/X ])) def. R(X)

If we define g as f and X̃ as f−1 ◦R(P) and use Lemma 3, we get

R(Q)[ f−1 ◦R(P)/X̃ ]⊆ (m f )−1 ◦R(Q[P/X ]))

⊆ (m f )−1 ◦ (s−1 ◦R(P)) by 10.2

= (s ◦ (m f ))−1 ◦R(P) Lem. 7

Hence, we define the realizer recursively as f = s ◦ (m f ), that is, non-recursively,
f = rec(λ f (s ◦ (m f ))). As a result, in the final statement we can replace
the right-hand side (s ◦ (m f ))−1 ◦R(P) with f−1 ◦R(P) and, thus, show that
eq. (10.1) holds.

If Φ and P are Harrop then µ(Φ) and Q[P/X ] are also Harrop.

Show:

H(µ(Φ)⊆ P)
≡ H(µ(Φ))⊆H(P) Lem. 8
= H(µλX Q)⊆H(P) since Φ = λX Q
= µ(λX HX(Q))⊆H(P) since H(µ(Φ)) = µH(Φ)

and H(λX Q) = λX HX(Q)

By s.p. induction, it is enough to show

HX(Q)[H(P)/X ]⊆H(P) (10.4)

By i.h. we have: H(Φ(P)⊆ (P)), which is, by Lemma 8 equivalent to

H(Q[P/X ])⊆H(P) (10.5)

By i.h. we have H(Mon(Φ)) and using Lemma 3 we can substitute X and Y the
former implies

H(Mon(Φ)[X̂/X ][P/Y ]) (10.6)
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Writing out Mon(Φ)[X̂/X ][P/Y ] we obtain X̂ ⊆P→Q[X̂/X ]⊆Q[P/X ]. If we define
X̂ as H(P), 10.6 can be rewritten as H(Q[X̂/X ])[H(P)/X̂ ] ⊆ H(Q[P/X ]) but also
H(Q[X̂/X ])[H(P)/X̂ ] = HX(Q)[H(P)/X ], so we obtain

HX(Q)[H(P)/X ]⊆H(Q[P/X ]) (10.7)

By 10.7 and 10.5 we get HX(Q)[H(P)/X ]⊆H(P), which corresponds to our goal.

If Φ is non-Harrop and P is Harrop then µ(Φ) and Q[P/X ] are non-Harrop.

Show:

H(µ(Φ)⊆ P)
≡ R(µ(Φ))⊆ ∆(H(P)) Lem. 8
= R(µλX Q)⊆ ∆(H(P)) since Φ = λX Q
= µ(λ X̃ R(Q))⊆ ∆(H(P)) since R(µ(Φ)) = µR(Φ)

and R(λX Q) = λ X̃ R(Q)

By s.p. induction, it is enough to show

R(Q)[∆(H(P))/X̃ ]⊆ ∆(H(P)) (10.8)

By i.h. we have: H(Φ(P)⊆ (P)), which is, by Lemma 8 equivalent to

R(Q[P/X ])⊆ ∆(H(P)) (10.9)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[P/Y ]) (10.10)

Writing out Mon(Φ)[P/Y ] we obtain X ⊆ P→ Q ⊆ Q[P/X ]. Since P is Harrop,
10.10 can be rewritten as

H(X ⊆ P)→ mr(Q⊆ Q[P/X ]))

≡ (R(X)⊆ ∆(H(P))→ R(Q)⊆ m−1 ◦R(Q[P/X ]) Lem. 8

= X̃ ⊆ ∆(H(P))→ R(Q)⊆ m−1 ◦R(Q[P/X ])) def. R(X)

If we define X̃ as ∆(H(P)) and use Lemma 3, we get

R(Q)[∆(H(P))/X̃ ]⊆ m−1 ◦R(Q[P/X ]))

⊆ m−1 ◦∆(H(P)) by 10.9
= ∆(H(P)) Lem. 7
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This corresponds to our goal.

If Φ is Harrop and P is non-Harrop then µ(Φ) is Harrop.

Show:

ar(µ(Φ)⊆ P)

≡ H(µ(Φ))⊆ a−1 ∗R(P) Lem. 8

= H(µλX Q)⊆ a−1 ∗R(P) since Φ = λX Q

if X ∈ FV(Q) = µ(λX HX(Q))⊆ a−1 ∗R(P) since H(µ(Φ)) = µH(Φ)

and H(λX Q) = λX HX(Q)

if X /∈ FV(Q) = µ(λX H(Q))⊆ a−1 ∗R(P) as above but HX = H

We look at these two subcases:

(a) X /∈ FV(Q)

By s.p. induction it is suffices to show that H(Q) ⊆ a−1 ∗ (R(P)). By i.h.
we have ar(Φ(P) ⊆ (P)). By Lemma 8 the latter is equivalent to H(Q) ⊆
a−1 ∗ (R(P)), which corresponds to our goal.

(b) X ∈ FV(Q)

By s.p. induction, it is enough to show

HX(Q)[a−1 ∗ (R(P))/X ]⊆ a−1 ∗R(P) (10.11)

By i.h. we have: sr(Φ(P)⊆ (P)), which is, by Lemma 8 equivalent to

R(Q[P/X ])⊆ s−1 ◦R(P) (10.12)

By i.h. we have mr(Mon(Φ)) and using Lemma 3, followed by Lemma 4(a),
we obtain

mr(Mon(Φ)[X̂/X ][P/Y ]) (10.13)

Writing out Mon(Φ)[X̂/X ][P/Y ] we obtain X̂ ⊆P→Q[X̂/X ]⊆Q[P/X ]. There-
fore, 10.13 can be rewritten as

∀b(ar(X̂ ⊆ P)→ (m b)r(Q[X̂/X ]⊆ Q[P/X ]))

≡ ∀b(H(X̂)⊆ b−1 ∗R(P)→HX(Q)[X̂/X ]⊆ (m b)−1 ∗R(Q[P/X ])) Lem. 8

= ∀b(X̂ ⊆ b−1 ∗R(P)→HX(Q)[X̂/X ]⊆ (m b)−1 ∗R(Q[P/X ])) def. H(X̂)
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If we define b as a and X̂ as a−1 ∗R(P), we obtain

HX(Q)[a−1 ∗R(P)/X ]⊆ (m a)−1 ∗R(Q[P/X ]) (10.14)

since H(Q[X̂/X ])[a−1 ∗ (R(P))/X̂ ] = HX(Q)[a−1 ∗ (R(P))/X ].

Now,

HX(Q)[a−1 ∗ (R(P))/X ]⊆ (m a)−1 ∗R(Q[P/X ])

⊆ (m a)−1 ∗ (s−1 ◦R(P)) by 10.12

= (s(m a))−1 ∗R(P)) Lem. 7

Hence, we define the realizer recursively as a = s(m a). As a result, in the
final statement we can replace the right-hand side (s(m a))−1 ∗R(P)) with
a−1 ∗R(P) and, thus, show that eq. (10.11) holds.

HSI’. Assume ∆,Γ `IFP’ (µ(Φ) ⊆ P) has been derived from ∆,Γ `IFP’ (Φ(P) ∩
µ(Φ) ⊆ P) and Mon(Φ) by HSI’, where Φ(P) = Q[P/X ]. Here Mon(Φ) means
X ⊆ Y → Q⊆ Q[Y/X ]. We look at specific cases, depending on whether Φ and P
are Harrop.

If Φ and P are non-Harrop then, as with the IND’ case, we show (µ(λ X̃R(Q)))⊆
f−1 ◦ R(P). By s.p. half-strong induction, it is enough to show

(R(Q)[ f−1 ◦ R(P)/X̃ ]) ∩ R(µ(Φ))⊆ f−1 ◦ R(P) (10.15)

By i.h. we have:

sr(Φ(P) ∩ µ(Φ)⊆ R(P))

≡ R(Φ(P) ∩ µ(Φ))⊆ s−1◦ ⊆ R(P)) Lem. 8

≡ πLt
−1 ◦R(Φ(P)) ∩ πRt

−1 ◦R(µ(Φ))⊆ s−1◦ ⊆ R(P)) Lem. 8

Since Φ(P) = Q[P/X ], the above is equal to

πLt
−1 ◦R(Q[P/X ]) ∩ πRt

−1 ◦R(µ(Φ))⊆ s−1◦ ⊆ R(P)) (10.16)

R(µ(Φ)) = µR(Φ) and R(λX Q) = λ X̃ R(Q), the above is equal to

πLt
−1 ◦R(Q[P/X ]) ∩ πRt

−1 ◦µ(λ X̃ R(Q))⊆ s−1◦ ⊆ R(P)) (10.17)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[P/Y ]) (10.18)
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Writing out Mon(Φ)[P/Y ] we obtain X ⊆ P→ Q⊆ Q[P/X ]. Therefore, 10.18 can
be rewritten as

∀g(gr(X ⊆ P)→ (m g)r(Q⊆ Q[P/X ]))

≡ ∀g(R(X)⊆ g−1 ◦R(P)→ R(Q)⊆ (m g)−1 ◦R(Q[P/X ])) Lem. 8

= ∀g(X̃ ⊆ g−1 ◦R(P)→ R(Q)⊆ (m g)−1 ◦R(Q[P/X ])) def. R(X)

If we define g as f and X̃ as f−1 ◦R(P) and use Lemma 3, we get

R(Q)[ f−1 ◦R(P)/X̃ ]⊆ (m f )−1 ◦R(Q[P/Y ]) (10.19)

Now,

R(Q)[ f−1 ◦R(P)/X̃ ] ∩ R(µ(Φ))

⊆ ((m f )−1 ◦R(Q[P/X ])) ∩ R(µ(Φ))

= 〈(m f ), id〉−1 ◦ (πLt
−1 ◦R(Q[P/X ]) ∩ πRt

−1 ◦R(µ(Φ))) Lem. 7

⊆ 〈(m f ), id〉−1 ◦ (s−1 ◦R(P)) by 10.17

= (s ◦ 〈(m f ), id〉)−1 ◦R(P) Lem. 7

Here and in the rest of the thesis id stands for identity.
We define the realizer recursively as f = s ◦〈(m f ), id〉, that is, non-recursively,

f = rec(λ f (s ◦〈(m f ), id〉)). As a result, in the final statement we can replace the
right-hand side (s ◦ 〈(m f ), id〉)−1 ◦R(P) with f−1 ◦R(P) and, thus, show that
eq. (10.15) holds.

If Φ and P are Harrop then µ(Φ) and Q[P/X ] are also Harrop. As with IND’
case, we need to show µ(λX HX(Q)) ⊆ H(P). By s.p. half-strong induction, it
suffices to show

HX(Q)[H(P)/X ] ∩ H(µ(Φ))⊆H(P) (10.20)

By i.h. we have: H((Φ(P) ∩ µ(Φ))⊆ P), which is, by Lemma 8 equivalent to

H(Q[P/X ]) ∩ H(µ(Φ))⊆H(P) (10.21)

By i.h. we have H(Mon(Φ)) and using Lemma 3 we can substitute X and Y , so
the former implies

H(Mon(Φ)[X̂/X ][P/Y ]) (10.22)
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Writing out Mon(Φ)[X̂/X ][P/Y ] we obtain X̂ ⊆P→Q[X̂/X ]⊆Q[P/X ]. If we define
X̂ as H(P), 10.22 can be rewritten as H(Q[X̂/X ])[H(P)/X̂ ]⊆H(Q[P/X ]). But also
since H(Q[X̂/X ])[H(P)/X̂ ] = HX(Q)[H(P)/X ], so we obtain

HX(Q)[H(P)/X ]⊆H(Q[P/X ]) (10.23)

Now, by 10.23 and 10.21 HX(Q)[H(P)/X ] ∩ H(µ(Φ)) is a subset or it is equal
to H(Q[P/X ]) ∩ H(µ(Φ)), so HX(Q)[H(P)/X ] ∩ H(µ(Φ)) ⊆ H(P), which corre-
sponds to our goal.

If Φ is non-Harrop and P is Harrop then µ(Φ) and Q[P/X ] are non-Harrop.
As with IND’ case, we need to show µ(λ X̃ R(Q))⊆ ∆(H(P)). By s.p. half-strong
induction, it suffices to show

R(Q)[∆(H(P))/X̃ ] ∩ R(µ(Φ))⊆ ∆(H(P)) (10.24)

By i.h. we have:

H(Φ(P) ∩ µ(Φ)⊆ P)
≡ R(Φ(P) ∩ µ(Φ))⊆ ∆(H(P)) Lem. 8

≡ πLt
−1 ◦R(Φ(P)) ∩ πRt

−1 ◦R(µ(Φ))⊆ ∆(H(P)) Lem. 8

Since Φ(P) = Q[P/X ], the above is equal to

πLt
−1 ◦R(Q[P/X ]) ∩ πRt

−1 ◦R(µ(Φ))⊆ ∆(H(P)) (10.25)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[P/Y ]) (10.26)

Since P is Harrop, similarly to the case of IND’, 10.26 can be rewritten as X̃ ⊆
∆(H(P))→ R(Q)⊆ m−1 ◦R(Q[P/X ])).

H(X ⊆ P)→ mr(Q⊆ Q[P/X ])

≡ (R(X)⊆ ∆(H(P))→ R(Q)⊆ m−1 ◦R(Q[P/X ]) Lem. 8

= X̃ ⊆ ∆(H(P))→ R(Q)⊆ m−1 ◦R(Q[P/X ]) def. R(X)

If we define X̃ as ∆(H(P)) and use Lemma 3, we get

R(Q)[∆(H(P))/X̃ ]⊆ m−1 ◦R(Q[P/X ])) (10.27)
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Now,

R(Q)[∆(H(P))/X̃ ] ∩ R(µ(Φ))

⊆ m−1 ◦R(Q[P/X ])) ∩ R(µ(Φ))

⊆ 〈m, id〉−1 ◦ (πLt
−1 ◦R(Q[P/X ]) ∩ πRt

−1 ◦R(µ(Φ))) Lem. 7

⊆ 〈m, id〉−1 ◦∆(H(P)) by 10.25
= ∆(H(P)) Lem. 7

This corresponds to our goal.

If Φ is Harrop and P is non-Harrop then µ(Φ) is Harrop.

We need to show ar(µ(Φ)⊆ P), so as in case of IND’, this goal is equivalent
to the following:

if X ∈ FV(Q) : µ(λX HX(Q))⊆ a−1 ∗R(P)

if X /∈ FV(Q) : µ(λX H(Q))⊆ a−1 ∗R(P)

We look at these two subcases:

(a) X /∈ FV(Q)

By s.p. half-strong induction it is suffices to show that H(Q) ∩ H(µ(Φ))⊆
a−1 ∗ (R(P)). By i.h. we have ar((Φ(P) ∩ µ(Φ)) ⊆ P). By Lemma 8 the
latter is equivalent to H(Q) ∩ H(µ(Φ))⊆ a−1 ∗R(P), which corresponds to
our goal.

(b) X ∈ FV(Q)

By s.p. half-strong induction, it is enough to show

HX(Q)[a−1 ∗R(P)/X ] ∩ H(µ(Φ))⊆ a−1 ∗R(P) (10.28)

By i.h. we have: sr((Φ(P) ∩ µ(Φ))⊆ P), which is, by Lemma 8 equivalent
to

R(Q[P/X ] ∩ µ(Φ))⊆ s−1 ◦ (R(P)) (10.29)

By i.h. we have mr(Mon(Φ)) and using Lemma 3, followed by Lemma 4(a),
we obtain

mr(Mon(Φ)[X̂/X ][P/Y ]) (10.30)
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Writing out Mon(Φ)[X̂/X ][P/Y ] we obtain X̂ ⊆P→Q[X̂/X ]⊆Q[P/X ]. There-
fore, 10.30 can be rewritten as

∀b(ar(X̂ ⊆ P)→ (m b)r(Q[X̂/X ]⊆ Q[P/X ]))

≡ ∀b(H(X̂)⊆ b−1 ∗R(P)→HX(Q)[X̂/X ]⊆ (m b)−1 ∗R(Q[P/X ])) Lem. 8

= ∀b(X̂ ⊆ b−1 ∗R(P)→HX(Q)[X̂/X ]⊆ (m b)−1 ∗R(Q[P/X ])) def. H(X̂)

If we define b as a and X̂ as a−1 ∗ (R(P)), we obtain

HX(Q)[a−1 ∗R(P)/X ]⊆ (m a)−1 ∗R(Q[P/X ])) (10.31)

since H(Q[X̂/X ])[a−1 ∗R(P)/X̂ ] = HX(Q)[a−1 ∗R(P)/X ]. Now,

(HX(Q)[a−1 ∗R(P)/X ]) ∩ H(µ(Φ))

⊆ ((m a)−1 ∗R(Q[P/X ])) ∩ H(µ(Φ))

= (m a)−1 ∗ (R(Q[P/X ]) ∩ ∆(H(µ(Φ)))) Lem. 7

= (m a)−1 ∗R(Q[P/X ] ∩ µ(Φ)) Lem. 7

⊆ (m a)−1 ∗ (s−1 ◦R(P)) by 10.29

= (s(m a))−1 ∗R(P) Lem. 7

Hence, we define the realizer recursively as a = s(m a). As a result, in the
final statement we can replace the right-hand side ((s(m a))−1 ◦R(P) with
a−1 ◦R(P) and, thus, show that eq. (10.28) holds.

SI’. Assume ∆,Γ `IFP’ (µ(Φ) ⊆ P) has been derived from ∆,Γ `IFP’ (Φ(P ∩
µ(Φ)) ⊆ P) and Mon(Φ) by SI’, where Φ(P ∩ µ(Φ)) = Q[P ∩ µ(Φ)/X ]. Here
Mon(Φ) means X ⊆ Y → Q ⊆ Q[Y/X ]. We look at specific cases, depending on
whether Φ and P are Harrop.

If Φ and P are non-Harrop then, as with IND’ case, we show (µ(λ X̃R(Q)))⊆
f−1 ◦ R(P). By s.p. strong induction, it suffices to show

R(Q)[ f−1 ◦ R(P ∩ µ(Φ))/X̃ ]⊆ f−1 ◦ R(P) (10.32)

By i.h. we have:

sr(Φ(P ∩ µ(Φ))⊆ R(P))

≡ R(Φ(P ∩ µ(Φ)))⊆ s−1 ◦R(P) Lem. 8
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Since Φ(P ∩ µ(Φ)) = Q[(P ∩ µ(Φ))/X:

R(Q[(P ∩ µ(Φ))/X ])⊆ s−1 ◦R(P) (10.33)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[(P ∩ µ(Φ))/Y ]) (10.34)

Writing out Mon(Φ)[P ∩ µ(Φ)/Y ] we obtain X ⊆ (P ∩ µ(Φ))→ Q ⊆ Q[P ∩
µ(Φ)/X ]. Therefore, 10.34 can be rewritten as

∀g(gr(X ⊆ (P ∩ µ(Φ)))→ (m g)r(Q⊆ Q[(P ∩ µ(Φ))/X ]))

≡ ∀g(R(X)⊆ g−1 ◦R(P ∩ µ(Φ))→ R(Q)⊆ (m g)−1 ◦R(Q[(P ∩ µ(Φ))/X ])) Lem. 8

= ∀g(X̃ ⊆ g−1 ◦R(P ∩ µ(Φ))→ R(Q)⊆ (m g)−1 ◦R(Q[(P ∩ µ(Φ))/X ])) def. R(X)

If we define g as f and X̃ as f−1 ◦R(P ∩ µ(Φ)) and use Lemma 3, we get

R(Q)[ f−1 ◦R(P ∩ µ(Φ))/X̃ ]⊆ (m f )−1 ◦R(Q[(P ∩ µ(Φ))/X ])

⊆ (m f )−1 ◦ (s−1 ◦R(P)) by 10.33

= (s ◦ (m f ))−1 ◦R(P) Lem. 7

Hence, we define the realizer recursively as f = s ◦ (m f ), that is, non-recursively,
f = rec(λ f (s ◦ (m f ))). As a result, in the final statement we can replace
the right-hand side (s ◦ (m f ))−1 ◦R(P) with f−1 ◦R(P) and, thus, show that
eq. (10.32) holds.

If Φ and P are Harrop then µ(Φ) and Q[(P ∩ µ(Φ))/X ] are also Harrop. As
with IND’ case, we need to show µ(λX HX(Q))⊆H(P). By s.p. strong induction,
it suffices to show

HX(Q)[(P ∩ µ(Φ))/X ]⊆H(P) (10.35)

By i.h. we have: H((Φ(P ∩ µ(Φ))⊆ P)), which is, by Lemma 8 equivalent to

H(Q[(P ∩ µ(Φ))/X ])⊆H(P) (10.36)

By i.h. we have H(Mon(Φ)) and using Lemma 3 we can substitute X and Y , so
the former implies

H(Mon(Φ)[X̂/X ][(P ∩ µ(Φ))/Y ]) (10.37)

Writing out Mon(Φ)[X̂/X ][(P ∩ (µ(Φ)))/Y ] we obtain X̂ ⊆ (P ∩ (µ(Φ))) →
Q[X̂/X ] ⊆ Q[(P ∩ (µ(Φ)))/X ]. If we define X̂ as H(P ∩ (µ(Φ))), 10.37 can be
rewritten as H(Q[X̂/X ])[H(P)/X̂ ]⊆H(Q[P/X ]). Since H(Q[X̂/X ])[H(P∩ (µ(Φ)))/X̂ ]
is equal to HX(Q)[H(P ∩ (µ(Φ)))/X ], we obtain
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HX(Q)[H(P ∩ µ(Φ))/X ]⊆H(Q[(P ∩ µ(Φ))/X ]) (10.38)

Now, by 10.38 and 10.36 we get HX(Q)[(P ∩ µ(Φ))/X ] ⊆ H(P) , which corre-
sponds to our goal.

If Φ is non-Harrop and P is Harrop then µ(Φ) and Q[(P ∩ µ(Φ))/X ] are non-
Harrop. As with IND’ case, we need to show µ(λ X̃ R(Q)) ⊆ ∆(H(P)). By s.p.
strong induction, it suffices to show

R(Q)[∆(H(P ∩ µ(Φ)))/X̃ ]⊆ ∆(H(P)) (10.39)

By i.h. we have:

H(Φ(P ∩ µ(Φ))⊆ P)
≡ R(Φ(P ∩ µ(Φ)))⊆ ∆(H(P)) Lem. 8

Since Φ(P ∩ µ(Φ)) = Q[(P ∩ µ(Φ))/X ], the above is equal to

R(Q)[(P ∩ µ(Φ))/X ]⊆ ∆(H(P)) (10.40)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[(P ∩ µ(Φ))/Y ]) (10.41)

Writing out Mon(Φ)[(P ∩ µ(Φ))/Y ] we obtain X ⊆ (P ∩ µ(Φ))→ Q ⊆ Q[(P ∩
(µ(Φ)))/X ]. Since P is Harrop, 10.41 can be rewritten as

H(X ⊆ (P ∩ (µ(Φ))))→ mr(Q⊆ Q[(P ∩ (µ(Φ)))/X ]))

≡ (R(X)⊆ ∆(H(P ∩ (µ(Φ))))→ R(Q)⊆ m−1 ◦R(Q[(P ∩ µ(Φ))/X ]) Lem. 8

= X̃ ⊆ ∆(H(P ∩ (µ(Φ))))→ R(Q)⊆ m−1 ◦R(Q[(P ∩ (µ(Φ)))/X ])) def. R(X)

If we define X̃ as ∆(H(P ∩ (µ(Φ)))) and use Lemma 3, we get

R(Q)[∆(H(P ∩ µ(Φ)))/X̃ ]⊆ m−1 ◦R(Q[(P ∩ µ(Φ))/X ]))

⊆ m−1 ◦∆(H(P)) by 10.40
= ∆(H(P)) Lem. 7

This corresponds to our goal.
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If Φ is Harrop and P is non-Harrop then µ(Φ) is Harrop.

We need to show ar(µ(Φ)⊆ P), so as in case of IND’, this goal is equivalent
to the following:

if X ∈ FV(Q) : µ(λX HX(Q))⊆ a−1 ∗R(P)

if X /∈ FV(Q) : µ(λX H(Q))⊆ a−1 ∗R(P)

We look at these two subcases:

(a) X /∈ FV(Q)

By s.p. strong induction it is suffices to show that H(Φ(P ∩ µ(Φ))⊆ a−1 ∗
(R(P)). By i.h. we have ar((Φ(P ∩ µ(Φ))) ⊆ P). By Lemma 8 the latter
is equivalent to H(Φ(P ∩ µ(Φ)) ⊆ a−1 ∗ (R(P)), which corresponds to our
goal.

(b) X ∈ FV(Q)

By s.p. strong induction, it is enough to show

HX(Q)[a−1 ∗R(P ∩ µ(Φ))/X ]⊆ a−1 ∗ (R(P)) (10.42)

By i.h. we have: sr(Φ(P ∩ µ(Φ)) ⊆ P), which is, by Lemma 8 equivalent
to

R(Q[(P ∩ µ(Φ))/X ])⊆ s−1 ◦R(P) (10.43)

By i.h. we have mr(Mon(Φ)) and using Lemma 3, followed by Lemma 4(a),
we obtain

mr(Mon(Φ)[X̂/X ][(P ∩ µ(Φ))/Y ]) (10.44)

Writing out Mon(Φ)[X̂/X ][(P ∩ µ(Φ))/Y ] we obtain X̂ ⊆ (P ∩ µ(Φ))→
Q[X̂/X ] ⊆ Q[(P ∩ µ(Φ))/X ]. Therefore, 10.44 can be rewritten by Lem. 8
and with respect to the definition of H(X̂) as follows

∀b(ar(X̂ ⊆ (P∩µ(Φ)))→ (m b)r(Q[X̂/X ]⊆ Q[(P∩µ(Φ))/X ]))

≡ ∀b(H(X̂)⊆ b−1 ∗R(P∩µ(Φ))→HX(Q)[X̂/X ]⊆ (m b)−1 ∗R(Q[(P∩µ(Φ))/X ]))

= ∀b(X̂ ⊆ b−1 ∗R(P∩µ(Φ))→HX(Q)[X̂/X ]⊆ (m b)−1 ∗R(Q[(P∩µ(Φ))/X ]))
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If we define b as a and X̂ as a−1 ∗R(P∩ µ(Φ)) and since H(Q[X̂/X ])[a−1 ∗
R(P∩µ(Φ))/X̂ ] = HX(Q)[a−1 ∗R(P∩µ(Φ))/X ], we obtain

HX(Q)[a−1 ∗R(P ∩ µ(Φ))/X ]⊆ (m a)−1 ∗R(Q[(P ∩ µ(Φ))/X ])

⊆ (m a)−1 ∗ (s−1 ◦R(P)) by 10.43

= (s(m a))−1 ∗R(P) Lem. 7

Hence, we define the realizer recursively as a = s(m a). As a result, in the
final statement we can replace the right-hand side (s(m a))−1 ∗R(P) with
a−1 ∗R(P) and, thus, show that eq. (10.42) holds.

COIND’. Assume ∆,Γ `IFP’ (P ⊆ ν(Φ)) has been derived from ∆,Γ `IFP’ P ⊆
Φ(P) and Mon(Φ) by COIND’, where Φ(P) = Q[P/X ]. Here Mon(Φ) means X ⊆
Y → Q ⊆ Q[Y/X ]. We look at specific cases, depending on whether Φ and P are
Harrop.

If Φ and P are non-Harrop:

Show:

f r(P⊆ ν(Φ))

≡ f ◦R(P)⊆ R(ν(Φ)) Lem. 8
= f ◦R(P)⊆ R(ν(λX Q)) since Φ = λX Q
= f ◦R(P)⊆ ν(λ X̃R(Q)) since R(ν(Φ)) = ν(R(Φ))

and R(λX Q) = λ X̃(R(Q))

By s.p. coinduction, it is enough to show

f ◦R(P)⊆ R(Q)[ f ◦ R(P)/X̃ ] (10.45)

By i.h. we have: sr(P⊆Φ(P)), which is, by Lemma 8 equivalent to

s ◦ R(P)⊆ R(Q[P/X ]) (10.46)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[P/X ]) (10.47)

Writing out Mon(Φ)[P/X ] we obtain P⊆Y →Q[P/X ]⊆Q[Y/X ]. Therefore, 10.47
can be rewritten as

∀g(gr(P⊆ Y )→ (m g)r(Q[P/X ]⊆ Q[Y/X ])

≡ ∀g(g ◦ R(P)⊆ R(Y )→ (m g)◦R(Q[P/X ])⊆ R(Q[Y/X ])) Lem. 8
= ∀g(g ◦ R(P)⊆ Ỹ → (m g)◦ R(Q[P/X ])⊆ R(Q[Y/X ])) def. R(Y )
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If we define g as f and Ỹ as f ◦R(P) and use Lemma 3, we get

R(Q)[ f ◦R(P)/X̃ ]⊇ (m f )◦R(Q[P/X ]))

⊇ (m f )◦ (s ◦R(P)) by 10.46
= ((m f )◦ s)◦R(P) Lem. 7

Hence, we define the realizer recursively as f = (m f )◦ s, that is, non-recursively,
f = rec(λ f ((m f )◦ s)). As a result, in the final statement we can replace the right-
hand side ((m f )◦ s)◦R(P) with f ◦R(P) and, thus, show that eq. (10.45) holds.

If Φ and P are Harrop then ν(Φ) and Q[P/X ] are also Harrop.

Show:

H(P⊆ ν(Φ))

≡ H(P)⊆H(ν(Φ)) Lem. 8
= H(P)⊆H(νλX Q) since Φ = λX Q
= H(P)⊆ ν(λX HX(Q)) since H(ν(Φ)) = νH(Φ)

and H(λX Q) = λX HX(Q)

By s.p. coinduction, it is enough to show

H(P)⊆HX(Q)[H(P)/X ] (10.48)

By i.h. we have: H(P⊆Φ(P)), which is, by Lemma 8 equivalent to

H(P)⊆H(Q[P/X ]) (10.49)

By i.h. we have H(Mon(Φ)) and using Lemma 3 we can substitute X and Y the
former implies

H(Mon(Φ)[P/X ][X̂/Y ]) (10.50)

Writing out Mon(Φ)[P/X ][X̂/Y ] we obtain P⊆ X̂→Q[P/X ]⊆Q[X̂/X ]. If we define
X̂ as H(P), 10.50 can be rewritten as H(Q[P/X ])⊆H(Q[X̂/X ])[H(P)/X̂ ], which is
the same as H(Q[X̂/X ])[H(P)/X̂ ] = HX(Q)[H(P)/X ], so we obtain

H(Q[P/X ])⊆HX(Q)[H(P)/X ] (10.51)

By 10.51 and 10.49 we get H(P) ⊆ HX(Q)[H(P)/X ], which corresponds to our
goal.
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If Φ is non-Harrop and P is Harrop then ν(Φ) and Q[P/X ] are non-Harrop.

Show:

ar(P⊆ ν(Φ))

≡ a∗H(P)⊆ R(ν(Φ)) Lem. 8
= a∗H(P)⊆ R(ν(λX Q)) since Φ = λX Q
= a∗H(P)⊆ ν(λX R(Q))) since R(ν(Φ)) = νR(Φ)

and R(λX Q) = λ X̃ R(Q)

By s.p. coinduction, it is suffices to show

a∗H(P)⊆ R(Q)[a∗H(P)/X̃ ] (10.52)

By i.h. we have: sr(P⊆Φ(P))⊆ (P)), which is, by Lemma 8 equivalent to

s∗H(P)⊆ R(Q[P/X ]) (10.53)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[P/X ]) (10.54)

Writing out Mon(Φ)[P/X ] we obtain P⊆Y →Q[P/X ]⊆Q[Y/X ]. Therefore, 10.54
can be rewritten as

∀g(gr(P⊆ Y )→ (m g)r(Q[P/X ]⊆ Q[Y/X ])

≡ ∀g(g ∗H(P)⊆ R(Y )→ (m g)◦R(Q[P/X ])⊆ R(Q[Y/X ])) Lem. 8
= ∀g(g ∗H(P)⊆ Ỹ → (m g)◦ R(Q[P/X ])⊆ R(Q[Y/X ])) def. R(Y )

If we define g as a and Ỹ as a ∗H(P), we obtain

R(Q)[a ∗H(P)/X̃ ]⊇ (m a)◦ R(Q[P/X ])

⊇ (m a)◦ (s∗H(P)) by 10.53
= ((m a) s)∗H(P) Lem. 7

Hence, we define the realizer recursively as a = (m a) s. As a result, in the final
statement we can replace the right-hand side ((m a) s)∗R(P) with a∗R(P) and,
thus, show that eq. (10.52) holds.
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If Φ is Harrop and P is non-Harrop then ν(Φ) is Harrop.

Show:

H(P⊆ ν(Φ))

≡ ∃(R(P))⊆H(ν(Φ)) Lem. 8
if X ∈ FV(Q) = ∃(R(P))⊆ ν(λX HX(Q)) since H(ν(Φ)) = νH(Φ)

and H(λX Q) = λX HX(Q)

if X /∈ FV(Q) = ∃(R(P))⊆ ν(λX H(Q)) as above but HX = H

We look at these two subcases:

(a) X /∈ FV(Q)

By s.p. coinduction it is suffices to show that ∃(R(P)) ⊆ H(Q). This corre-
sponds to i.h.: H(P⊆ Q), which by Lemma 8 is equal to ∃(R(P))⊆H(Q).

(b) X ∈ FV(Q). In this case Q, Q[P/X ] and Mon(Φ)[P/X ][X̂/Y ] are non-Harrop.

By s.p. coinduction, it suffices to show

∃(R(P))⊆HX(Q)[∃(R(P))/X ] (10.55)

By i.h. we have: sr(P⊆Φ(P)), which is, by Lemma 8 equivalent to

s ◦ R(P)⊆ R(Q[P/X ]) (10.56)

By i.h. we have H(Mon(Φ)) and using Lemma 3, followed by Lemma 4(a),
we obtain

H(Mon(Φ)[P/X ][X̂/Y ]) (10.57)

Writing out Mon(Φ)[P/X ][X̂/Y ] we obtain P⊆ X̂→Q[P/X ]⊆Q[X̂/X ]. There-
fore, 10.57 can be rewritten as ∃(R(P))⊆ X̂→∃(R(Q[P/X ]))⊆H(Q[X̂/X ]).
If we define X̂ = ∃(R(P)) and use Lemma 3, we obtain

∃(R(Q[P/X ]))⊆H(Q[X̂/X ])[∃(R(P))/X̂ ]

∃(R(Q[P/X ])) = HX(Q)[∃(R(P))/X ] subst.
∃(s ◦R(P))⊆HX(Q)[∃(R(P))/X ] by 10.56
∃(R(P)) = HX(Q)[∃(R(P))/X ] Lem. 7

This corresponds to our goal.
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HSC’. Assume ∆,Γ `IFP’ (P ⊆ ν(Φ)) has been derived from ∆,Γ `IFP’ (P ⊆
Φ(P) ∪ ν(Φ)) and Mon(Φ) by HSC’, where P ⊆ Q[P/X ] ∪ ν(Φ). Here Mon(Φ)
means X ⊆ Y → Q⊆ Q[Y/X ]. We look at specific cases, depending on whether Φ

and P are Harrop.

If Φ and P are non-Harrop then, as with COIND’ case, we need to show f r(P⊆
Φ(P) ∪ ν(Φ)), which can be rewritten as f ◦R(P) ⊆ ν(λ X̃R(Q)). By s.p. half-
strong coinduction, it is enough to show

f ◦ R(P)⊆ R(Q)[ f ◦ R(P)/X̃ ] ∪ ν(R(Φ)) (10.58)

By i.h. we have:

sr(R(P)⊆Φ(P) ∪ ν(Φ))

≡ s ◦ R(P)⊆ R(Φ(P) ∪ ν(Φ)) Lem. 8
≡ s ◦ R(P)⊆ (Lt ◦ R(Φ(P)) ∪ Rt ◦ R(ν(Φ))) Lem. 8

Since Φ(P) = Q[P/X ] and by definition of R(µ(Φ)), the above is equal to

s ◦ R(P)⊆ (Lt ◦ R(Q[P/X ]) ∪ Rt ◦ ν(R(Φ))) (10.59)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[P/X ]) (10.60)

Writing out Mon(Φ)[P/X ] we obtain P⊆Y →Q[P/X ]⊆Q[Y/X ]. Therefore, 10.60
can be rewritten as

∀g(gr(P⊆ Y )→ (m g)r(Q[P/X ]⊆ Q[Y/X ]))

≡ ∀g(g ◦ R(P)⊆ R(Y )→ (m g) ◦ R(Q[P/X ])⊆ R(Q[Y/X ])) Lem. 8
= ∀g(g ◦ R(P)⊆ Ỹ → (m g) ◦ R(Q[P/X ])⊆ R(Q[Y/X ])) def. R(X)

If we define g as f and Ỹ as f ◦ R(P) and use Lemma 3, we get

(m f ) ◦ R(Q[P/X ])⊆ R(Q)[ f ◦ R(P)/X̃ ] (10.61)

Now,

R(Q)[ f ◦ R(P)/X̃ ] ∪ ν(R(Φ))

⊇ (m f ) ◦ R(Q[P/X ]) ∪ ν(R(Φ))

= [(m f )+ id] ◦ (Lt ◦ R(Q[P/X ]) ∪ Rt ◦ R(ν(Φ))) Lem. 7
= [(m f )+ id] ◦ (Lt ◦ R(Q[P/X ]) ∪ Rt ◦ ν(R(Φ))) by def. R(µ(Φ))

⊇ [(m f )+ id] ◦ (s◦R(P)) by 10.59
= ([(m f )+ id] ◦ s) ◦ R(P) Lem. 7
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Hence, we define the realizer recursively as f = [(m f )+ id] ◦ s, that is, non-
recursively, f = rec(λ f ([(m f )+ id] ◦ s)). As a result, in the final statement we
can replace the right-hand side ([(m f )+ id] ◦ s) ◦ R(P) with f ◦ R(P) and, thus,
show that eq. (10.58) holds.

If both Φ and P are Harrop then we need to show H(P) ⊆ ν(λX HX(Q)). By
s.p. half-strong coinduction, it suffices to show

H(P)⊆HX(Q)[H(P)/X ] ∪ H(ν(Φ)) (10.62)

By i.h. we have: H(P⊆Φ(P) ∪ ν(Φ)), which is, by Lemma 8 equivalent to

H(P)⊆H(Q[P/X ]) ∪ H(ν(Φ)) (10.63)

By i.h. we have H(Mon(Φ)) and using Lemma 3 we can substitute X and Y the
former implies

H(Mon(Φ)[P/X ][X̂/Y ]) (10.64)

Writing out Mon(Φ)[P/X ][X̂/Y ] we obtain P⊆ X̂→Q[P/X ]⊆Q[X̂/X ]. If we define
X̂ as H(P), 10.64 can be rewritten as H(Q[P/X ])⊆H(Q[X̂/X ])[H(P)/X̂ ], which is
the same as H(Q[X̂/X ])[H(P)/X̂ ] = HX(Q)[H(P)/X ], so we obtain

H(Q[P/X ])⊆HX(Q)[H(P)/X ] (10.65)

Now, by 10.65 and 10.63 H(Q[P/X ]) ∪ H(ν(Φ)) ⊆ HX(Q)[H(P)/X ] ∪ H(ν(Φ))
and, therefore, we get H(P)⊆HX(Q)[H(P)/X ] ∪ H(ν(Φ)), which corresponds to
our goal.

If Φ is non-Harrop and P is Harrop then (Φ) and Q[P/X ] are non-Harrop. As
with COIND’ case, we need to show ar(P⊆ ν(Φ)), i.e. a∗H(P)⊆ ν(λX R(Q))).
By s.p. half-strong coinduction, it suffices to show

a∗H(P)⊆ R(Q)[a∗H(P)/X̃ ] ∪ R(ν(Φ)) (10.66)

By i.h. we have: sr(P⊆Φ(P) ∪ ν(Φ)), which is, by Lemma 8 equivalent to

s∗H(P)⊆ (Lt ◦ R(Q[P/X ]) ∪ Rt ◦ R(ν(Φ))) (10.67)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[P/X ]) (10.68)
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Writing out Mon(Φ)[P/X ] we obtain P⊆Y →Q[P/X ]⊆Q[Y/X ]. Therefore, 10.68
can be rewritten as

∀g(gr(P⊆ Y )→ (m g)r(Q[P/X ]⊆ Q[Y/X ])

≡ ∀g(g ∗H(P)⊆ R(Y )→ (m g)◦R(Q[P/X ])⊆ R(Q[Y/X ])) Lem. 8
= ∀g(g ∗H(P)⊆ Ỹ → (m g)◦ R(Q[P/X ])⊆ R(Q[Y/X ])) def. R(Y )

If we define g as a and Ỹ as a ∗H(P), we obtain

R(Q)[a ∗H(P)/X̃ ] ∪ R(ν(Φ))⊇ ((m a)◦ R(Q[P/X ])) ∪ R(ν(Φ))

(by Lem. 7) = [(m a)+ id] ◦ (Lt ◦ R(Q[P/X ]) ∪ Rt ◦ R(ν(Φ)))

(by 10.67)⊇ [(m a)+ id] ◦ (s∗H(P))

(by Lem. 7) = ([(m a)+ id] s)∗H(P)

Hence, we define the realizer recursively as a = ([(m a)+ id] s). As a result, in
the final statement we can replace the right-hand side ([(m a)+ id] s)∗R(P) with
a∗R(P) and, thus, show that eq. (10.66) holds.

If Φ is Harrop and P is non-Harrop then Φ is Harrop.

We need to show H(P⊆ ν(Φ)), so as in case of COIND’, this goal is equivalent
to the following:

if X ∈ FV(Q) = ∃(R(P))⊆ ν(λX HX(Q))

if X /∈ FV(Q) = ∃(R(P))⊆ ν(λX H(Q))

We look at these two subcases:

(a) X /∈ FV(Q)

By s.p. half-strong coinduction it is suffices to show that ∃(R(P))⊆H(Q ∪
ν(Φ)). This corresponds to i.h.: H(P⊆ Q ∪ (ν(Φ)) or, by Lemma 8, ∃(R(P))⊆
H(Q ∪ ν(Φ)).

(b) X ∈ FV(Q). In this case Q, Q[P/X ] and Mon(Φ)[P/X ][X̂/Y ] are non-Harrop.

By s.p. half-strong coinduction, it suffices to show

∃(R(P))⊆HX(Q)[∃(R(P))/X ] ∪ H(ν(Φ))) (10.69)

By i.h. we have: sr(P⊆Φ(P) ∪ (ν(Φ))), which is, by Lemma 8 equivalent
to

s ◦ R(P)⊆ R(Q[P/X ] ∪ ν(Φ)) (10.70)
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By i.h. we have H(Mon(Φ)) and using Lemma 3, followed by Lemma 4(a),
we obtain

H(Mon(Φ)[P/X ][X̂/Y ]) (10.71)

Writing out Mon(Φ)[P/X ][X̂/Y ] we obtain P⊆ X̂→Q[P/X ]⊆Q[X̂/X ]. There-
fore, 10.71 can be rewritten as ∃(R(P))⊆ X̂→∃(R(Q[P/X ]))⊆H(Q[X̂/X ]).
If we define X̂ as ∃(R(P)) and use Lemma 3, we obtain

∃(R(Q[P/X ]))⊆H(Q[X̂/X ])[∃(R(P))/X̂ ]

= ∃(R(Q[P/X ]))⊆HX(Q)[∃(R(P))/X ] subst.

Now,

HX(Q)[∃(R(P))/X ] ∪ H(ν(Φ))⊇ (∃(R(Q[P/X ]))) ∪ H(ν(Φ))

= ∃(R(Q[P/X ] ∪ ν(Φ))) Lem. 7

⊇ ∃(s ◦R(P)) by 10.70

= ∃(R(P)) Lem. 7

This corresponds to our goal.

SC’. Assume ∆,Γ `IFP’ (P ⊆ ν(Φ)) has been derived from ∆,Γ `IFP’ (P ⊆
Φ(P ∪ ν(Φ))) and Mon(Φ) by SC’, where Φ(P ∪ ν(Φ)) = Q[P ∪ ν(Φ)/X ]. Here
Mon(Φ) means X ⊆ Y → Q ⊆ Q[Y/X ]. We look at specific cases, depending on
whether Φ and P are Harrop.

If Φ and P are non-Harrop then, as with COIND’ case, we need to show f ◦
R(P)⊆ ν(λ X̃R(Q)). By s.p. strong coinduction, it is enough to show

f ◦ R(P)⊆ R(Q)[ f ◦ (P ∪ ν(Φ))/X̃ ] (10.72)

By i.h. we have:

sr(R(P)⊆Φ(P ∪ ν(Φ)))

≡ s ◦ R(P)⊆ R(Φ(P ∪ ν(Φ))) Lem. 8

Since Φ(P ∪ ν(Φ)) = Q[(P ∪ ν(Φ))/X ]:

s ◦ R(P)⊆ R(Q[P ∪ ν(Φ)/X ]) (10.73)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[(P ∪ ν(Φ))/X ]) (10.74)
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Writing out Mon(Φ)[(P ∪ ν(Φ))/X ]) we obtain (P ∪ ν(Φ))⊆Y→Q[P ∪ ν(Φ)/X ]⊆
Q[Y/X ]. Therefore, 10.74 can be rewritten, using Lem. 8, the definitions of R(Y )
and R(λX Q), as follows:

∀g(gr((P ∪ ν(Φ))⊆ Y )→ (m g)r(Q[(P ∪ ν(Φ))/X ]⊆ Q[Y/X ])

≡ ∀g(g ◦ R(P ∪ ν(Φ))⊆ R(Y )→ (m g)◦R(Q[(P ∪ ν(Φ))/X ])⊆ R(Q[Y/X ]))

= ∀g(g ◦ R(P ∪ ν(Φ))⊆ Ỹ → (m g)◦ R(Q[(P ∪ ν(Φ))/X ])⊆ R(Q[Y/X ]))

= ∀g(g ◦ R(P ∪ ν(Φ))⊆ Ỹ → (m g)◦ R(Q[(P ∪ ν(Φ))/X ])⊆ R(Q)[Ỹ/X̃ ])

If we define g as f and Ỹ as f ◦R(P ∪ ν(Φ)) and use Lemma 3, we get

R(Q)[ f ◦R(P ∪ ν(Φ))/X̃ ]⊇ (m f )◦R(Q[(P ∪ ν(Φ))/X ]))

⊇ (m f )◦ (s ◦R(P)) by 10.73
= ((m f )◦ s)◦R(P) Lem. 7

Hence, we define the realizer recursively as f = (m f ) ◦ s, that is, non-
recursively, f = rec(λ f ((m f ) ◦ s)). As a result, in the final statement we can
replace the right-hand side ((m f )◦ s)◦R(P) with f ◦R(P) and, thus, show that
eq. (10.72) holds.

If Φ and P are Harrop then ν(Φ) and Q[P ∪ ν(Φ)/X ] are also Harrop. As in
COIND’ case, we need to show H(P)⊆ ν(λX HX(Q)). By s.p. strong coinduction,
it suffices to show

H(P)⊆HX(Q)[H(P ∪ ν(Φ))/X ] (10.75)

By i.h. we have: H(P⊆Φ(P ∪ ν(Φ))), which is, by Lemma 8 equivalent to

H(P)⊆H(Q[(P ∪ ν(Φ))/X ]) (10.76)

By i.h. we have H(Mon(Φ)) and using Lemma 3 we can substitute X and Y the
former implies

H(Mon(Φ)[(P ∪ ν(Φ))/X ][X̂/Y ]) (10.77)

Writing out Mon(Φ)[(P ∪ ν(Φ))/X ][X̂/Y ] we obtain (P ∪ ν(Φ)) ⊆ X̂ → Q[(P ∪
ν(Φ))/X ]⊆ Q[X̂/X ].

If we define X̂ as H(P ∪ ν(Φ)), 10.77 can be rewritten as

H(Q[(P ∪ ν(Φ))/X ])⊆H(Q[X̂/X ])[H(P ∪ ν(Φ))/X̂ ]

H(Q[(P ∪ ν(Φ))/X ])⊆HX(Q)[H(P ∪ ν(Φ))/X ] subst.
H(P)⊆HX(Q)[H(P ∪ ν(Φ))/X ] by 10.76

This corresponds to our goal.
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If Φ is non-Harrop and P is Harrop then ν(Φ) and Q[(P ∪ ν(Φ))/X ] are non-
Harrop. As in the regular COIND’ case, we need to show a∗H(P)⊆ ν(λX R(Q))).
By s.p. coinduction, it is suffices to show

a∗H(P)⊆ R(Q[P ∪ ν(Φ)/X ]) (10.78)

By i.h. we have: sr(P⊆Φ(P ∪ ν(Φ))⊆ P), which is, by Lemma 8 equivalent to

s∗H(P)⊆ R(Q[P ∪ ν(Φ)/X ]) (10.79)

By i.h. we have mrMon(Φ) and by Lemma 4(a) this implies

mr(Mon(Φ)[P ∪ ν(Φ)/X ]) (10.80)

Writing out Mon(Φ)[P ∪ ν(Φ)/X ] we obtain P ∪ ν(Φ)⊆ Y → Q[P ∪ ν(Φ)/X ]⊆
Q[Y/X ]. Therefore, 10.80 can be rewritten, using Lem. 8, the definition of R(Y )
and R(λX Q), as follows:

∀g(gr(P ∪ ν(Φ)⊆ Y )→ (m g)r(Q[P ∪ ν(Φ)/X ]⊆ Q[Y/X ])

≡ ∀g(g ∗R(P ∪ ν(Φ))⊆ R(Y )→ (m g)◦R(Q[P ∪ ν(Φ)/X ])⊆ R(Q[Y/X ]))

= ∀g(g ∗R(P ∪ ν(Φ))⊆ Ỹ → (m g)◦ R(Q[P ∪ ν(Φ)/X ])⊆ R(Q[Y/X ]))

= ∀g(g ∗ R(P ∪ ν(Φ))⊆ Ỹ → (m g)◦ R(Q[P ∪ ν(Φ)/X ])⊆ R(Q)[Ỹ/X̃ ])

If we define g as [id+a] (since P is Harrop but ν(Φ) is not) and Ỹ = [id+a] R(P ∪
ν(Φ)), we obtain

R(Q)[[id+a] ∗R(P ∪ ν(Φ))/X̃ ]⊇ (m [id+a])◦ R(Q[(P ∪ ν(Φ))/X ])

⊇ (m [id+a])◦ (s∗H(P)) by 10.79

= ((m [id+a]) s)∗H(P) Lem. 7

Hence, we define the realizer recursively as a = ((m [id+ a]) s). As a result, in
the final statement we can replace the right-hand side ((m [id+a]) s)∗R(P) with
a∗R(P) and, thus, show that eq. (10.78) holds.

If Φ is Harrop and P is non-Harrop then ν(Φ) is Harrop.

We need to show H(P⊆ ν(Φ)), so as in case of COIND’, the goals are the
following:

if X ∈ FV(Q) : ∃(R(P))⊆ ν(λX HX(Q))

if X /∈ FV(Q) : ∃(R(P))⊆ ν(λX H(Q))

We look at these two subcases:
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(a) X /∈ FV(Q)

By s.p. strong coinduction it is suffices to show that ∃(R(P))⊆H(Q). This
corresponds to i.h.: H(∃(R(P))⊆Φ(∃(R(P)) ∪ ν(Φ))), which is ∃(R(P))⊆
H(Q) by Lemma 8.

(b) X ∈FV(Q). In this case Q, Q[(P ∪ ν(Φ))/X ] and Mon(Φ)[(P ∪ ν(Φ))/X ][X̂/Y ]
are non-Harrop.

By s.p. strong coinduction, it suffices to show

∃(R(P))⊆HX(Q)[∃(R(P) ∪ ν(Φ)/X ] (10.81)

By i.h. we have: sr(P ⊆ Φ(P ∪ ν(Φ))), which is, by Lemma 8 equivalent
to

s ◦ R(P)⊆ R(Q[(P ∪ ν(Φ))/X ]) (10.82)

By i.h. we have H(Mon(Φ)) and using Lemma 3, followed by Lemma 4(a),
we obtain

H(Mon(Φ)[(P ∪ ν(Φ))/X ][X̂/Y ]) (10.83)

Writing out Mon(Φ)[(P ∪ ν(Φ))/X ][X̂/Y ] we get P⊆ X̂→Q[(P ∪ ν(Φ))/X ]⊆
Q[X̂/X ]. Therefore, 10.83 can be rewritten as ∃(R(P ∪ ν(Φ))) ⊆ X̂ →
∃(R(Q[(P ∪ ν(Φ))/X ])) ⊆ H(Q[X̂/X ]). If we define X̂ as ∃(R(P ∪ ν(Φ)))
and use Lemma 3, we obtain

∃(R(Q[(P ∪ ν(Φ))/X ]))⊆H(Q[X̂/X ])[∃(R(P ∪ ν(Φ)))/X̂ ]

∃(R(Q[(P ∪ ν(Φ))/X ]))⊆HX(Q)[∃(R(P ∪ ν(Φ)))/X ] subst.
∃(s ◦R(P))⊆HX(Q)[∃(R(P ∪ ν(Φ)))/X ] by 10.82
∃(R(P))⊆HX(Q)[∃(R(P ∪ ν(Φ)))/X ] Lem. 7

This corresponds to the goal.

The Soundness Theorem covers the denotational semantics aspect, showing
how we can construct programs from a given proof. An overview of realizers for
selected inference rules in IFP’ is given in fig. 10.2. The cases presented in this
table are for non-Harrop formulas.

The next chapter describes operational semantics of our system and presents
a proof of the adequacy theorem, showing the correspondence between the de-
notational semantics and the operational semantics.
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Chapter 11

Operational semantics and
adequacy

Contents
11.1 Finiteness, totality and approximation . . . . . . . . . . . . . . 112

11.2 Big-step semantics . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.3 Adequacy for finite computations . . . . . . . . . . . . . . . . . 119

11.4 Small-step semantics . . . . . . . . . . . . . . . . . . . . . . . . 124

11.5 Adequacy for infinite computations . . . . . . . . . . . . . . . . 129

Whilst the Soundness theorem confirms that the denotational semantics of an
extracted program is indeed a correct realizer of a formula proven in IFP, we still
need to introduce operational semantics to define how the data that realizes this
formula is calculated. This section gives an overview of the operational seman-
tics as defined by Berger and Tsuiki in [24] and presents the Adequacy Theorem,
showing the direct relation between denotational and operational semantics.

Traditionally, in operational semantics we distinguish between natural seman-
tics, which deals with the big-step reduction relation between closed programs
and values, and structural operational semantics, which looks into how small step
computations are performed. The latter is specifically interesting from the point
of view of infinite data computation.

In the initial drafts of [24], Berger considered the use of rules with closures
as in [16]. This approach meant that substitution at each evaluation step was
avoided through keeping track of the changes of the environment. While review-
ing the definitions, however, we came across an issue because the information
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11.1. Finiteness, totality and approximation

contained in the environment component was not always preserved when small-
step rules came into play.

Therefore, in the published version of this paper transition rules do not use
closures. They rely on substitution instead. This makes the rules easier to read.
Nevertheless, that comes at the price of a trickier implementation and potential
computational blow-up due to substitution.

To solve this issue, in this thesis we return to the approach with closures.
Using closures as defined in [16] is not sufficient for our purposes. Hence, we
introduce the notion of an extended closure, which will be explained later in
section 11.4, redefine the small-step rules accordingly, and prove that big-step
semantics and small-step semantics are equivalent. The proofs of adequacy from
[16] and [24] are revisited and adjusted to match this new approach. Here we
closely follow the structure of the operational semantics section in [24], modi-
fying the old definitions, adding new ones, and adjusting proofs with respect to
these alternations where needed.

11.1 Finiteness, totality and approximation

Before looking at the reduction rules, we define the notion of data. This defi-
nition is based on the definition of the Scott domain of realizers / programs, as
presented in section 9.3.

D = (Nil+Lt(D)+Rt(D)+Pair(D×D)+F(D→ D))⊥

We introduce a domain E of data elements, which is a subset of D:

E = (Nil+Lt(E)+Rt(E)+Pair(E×E))⊥

The domain of data elements is visually represented in fig. 11.1.
Inductive and coinductive definitions occur in proofs and programs often and,

therefore, we introduce special operators to represent the least and the greatest
fixed points. This allows us to be more concise.

The least and the greatest fixed points of the operators Φ and Φ⊥ defined
below are used to refer to different kinds of data, including

• arbitrary (E Def
= ν(Φ⊥)),

• finite (Ef
Def
= µ(Φ⊥)),

• total (Et
Def
= ν(Φ)), and

• finite total data (Eft
Def
= µ(Φ)), where
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11.1. Finiteness, totality and approximation

D

Ef Eft Et

E

Figure 11.1: Visualisation of the domain of realisers, the domain of data and its
sub-domains

Φ(X)(a) Def
=

∨
C

constructor

(
∃a1, . . . ,ak a =C(a1, . . . ,ak)∧

∧
i≤k

X(ai)

)

and Φ⊥ is a version of Φ with an additional option of ⊥

Φ⊥(X)(a) Def
= a =⊥∨Φ(X)(a) .

Technically, it is possible to define special inference rules of a form, e.g.,

a1 ∈ Ef, . . . ,ak ∈ Ef

C(a1, . . . ,ak)

for every constructor C. Since Ef also includes ⊥, an additional rule ⊥ ∈ Ef is
needed. For Eft, this rule is not included. Rules for E and Et are be build in the
same way but there may be infinite derivations. Binary versions of Φ and Φ⊥ are
defined as follows:

Φ
2(X)(a,b) Def

=
∨
C

(
∃a1, . . . ,ak,b1, . . . ,bk a =C(a1, . . . ,ak)∧

b =C(b1, . . . ,bk)∧
∧

i≤k X(ai,bi)

)
Φ

2
⊥(X)(a,b) Def

= a =⊥∨Φ
2(X)(a,b)

Φ
2
⊥,⊥(X)(a,b) Def

= a = b =⊥∨Φ
2(X)(a,b)
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11.1. Finiteness, totality and approximation

These binary operators are used in the following relation:

avE b Def
= ν(Φ2

⊥)(a,b) (domain ordering on E)

appr(a,b) Def
= µ(Φ2

⊥)(a,b) (finite approximation)

eq(a,b) Def
= ν(Φ2

⊥,⊥)(a,b) (bisimilarity)

feq(a,b) Def
= µ(Φ2)(a,b) (finite bisimilarity)

teq(a,b) Def
= ν(Φ2)(a,b) (total bisimilarity)

We refrain from defining v here for simplicity and instead state the properties of
the domain ordering on D.

(i) ⊥v a

(ii) C(~a)vC(~b)↔~av~b for every constructor C

(iii) F( f )v F(g)↔∀a ∈ D( f (a)v g(a))

(iv) C(~a) 6vC′(~b) for any two different constructors

(v) C(~a) 6v F( f )∧F( f ) 6vC(~a) for every constructor C

In terms of domain ordering, for a∈ E, avE b holds iff av b, where the latter
is the domain ordering on D. With respect to appr(a,b), teq(a,b) and feq(a,b),
there are the following equivalences:

appr(a,b)↔ avE b∧a ∈ Ef

teq(a,b)↔ eq(a,b)∧a,b ∈ Et

feq(a,b)↔ a = b∧a,b ∈ Ef↔ eq(a,b)∧a,b ∈ Ef

eq(a,b) does not logically imply a = b but rather expresses the fact that the ele-
ments of E are fully determined by their finite approximations, i.e. that E is an
algebraic domain. Therefore, we add the new axiom to RIFP:

∀a,b(eq(a,b)→ a = b) (11.1)

This axiom enables one to derive the equivalence of (a = b ∧ a,b ∈ E) and
(a vE b∧ b vE a), as well as the fact that if a vE b and a ∈ Et, then a and b are
equal.

Some of the observations mentioned above are included in the following
lemma, covering the usual examples of (co)inductive proofs on data.

Lemma 11
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11.1. Finiteness, totality and approximation

(a) appr(a,b)↔ (avE b∧a ∈ Ef).

(b) avE b↔ (∀d(appr(d,a)→ appr(d,b)) ∧ a ∈ E).

(c) teq(a,b)↔ eq(a,b)∧a,b ∈ Et

(d) feq(a,b)↔ a = b∧a,b ∈ Ef↔ eq(a,b)∧a,b ∈ Ef

Proof. The proofs of (a) and (b) are as in Lemma 24 in [24], i.e, (a) left to right
is proven by induction on appr(a,b) and right to left by induction on Ef(a); (b)
left to right is by (a) and right to left by coinduction on avE b.

(c) Left to right. Firstly, we show teq(a,b)→ eq(a,b) for all a, b is by coin-
duction on eq. Let P(a,b) = teq(a,b) = ν(Φ2)(a,b). By coinduction it suffices
to show ∀a,b(P(a,b)→ ν(Φ2

⊥,⊥)(a,b)). Assume P(a,b). Using the definition of
Φ2
⊥,⊥, it suffices to show that a = b = ⊥∨Φ2(P)(a,b). P is a fixed point of Φ2,

which means that Φ2(P) = P and so a = b = ⊥∨P(a,b). By ∨+r , we it suffices
to show P(a,b), which matches the above assumption. Secondly, we need to
show (i) (∃b teq(a,b))→ a ∈ Et and (ii) (∃a teq(a,b))→ b ∈ Et by coinduction on
Et. For (i), assume P(a) = ∃b teq(a,b). Since Et is the largest fixed point of Φ,
by coinduction it suffices to show P(a)→ Φ(P)(a). Assume a = C(a1, . . .ak) and
b = C(b1, . . .bk), where all arguments are pairwise equal, i.e., teq(ai,bi), where
1 ≤ i ≤ k. We have to find C′,a′i such that a = C′(~a′i)∧P(a′i). We choose C′ = C
and a′i = ai. To show P(ai) we have to find b′i such that teq(ai,b′i,). We choose
b′i = bi, so teq(ai,bi,), which corresponds to the assumption. For (ii) the proof is
symmetric.

Right to left by coinduction on teq(a,b). Assume P(a,b), that is, eq(a,b)∧a,b∈
Et. Our goal is ∀a,b(P(a,b)→ ν(Φ2)(a,b)), so by coinduction it suffices to show
∀a,b(P(a,b)→Φ2(P)(a,b)). Since a,b ∈ Et, a =C(a1, . . . ,ak) and b =C′(b1, . . . ,bk)
with ai,bi in Et, where 1 ≤ i ≤ k, for some constructors C,C′. Since eq(a,b), it
follows that C =C′ and eq(ai,bi). Therefore, P(ai,bi), which entails Φ2(P)(a,b).

(d) Left to right is covered by (i) and (ii) and right to left by (iii) and (iv).

(i) feq(a,b)→ a = b∧a,b ∈ Ef. Proof is by induction on feq(a,b).

(ii) a = b∧a,b ∈ Ef→ eq(a,b)∧a,b ∈ Ef. Proof is by coinduction on eq(a,b).

(iii) a= b∧a,b∈ Ef→ feq(a,b). Since a= b, it suffices to show a∈ Ef→ feq(a,a).
Proof is by induction on Ef.

(iv) eq(a,b)∧ a,b ∈ Ef → a = b∧ a,b ∈ Ef. Assume a ∈ Ef. It suffices to show
∀b(eq(a,b)→ a = b). Proof is by induction on Ef.
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11.2. Big-step semantics

With the initial definitions covered, we now proceed to more specific aspects
of operational semantics, starting with big-step semantics.

11.2 Big-step semantics

One of the ways to define operational semantics is using the big-step approach.
Big-step reduction rules in our approach use inductively defined closures.

A closure is a pair of a program with the corresponding environment, for
instance (M,η), where environment is a finite mapping from object variables to
closures.

A value is a closure (M,η), where the program M begins with a constructor.
A closed program M is a closure (M, /0) where /0 is the empty mapping.

The big-step reduction relation (⇓) from closures U to values V is defined as
follows:

(I, big) : V ⇓V

(II, big) :
η(a) ⇓V
(a,η) ⇓V

.

(III, big) :

(M,η) ⇓ (C(M1, . . . ,Mk),η
′)

(N,η [u1 7→ (M1,η
′), . . . ,uk 7→ (Mk,η

′)]) ⇓V
(case M of {. . .C(u1, . . . ,uk)→ N; . . .},η) ⇓V

(IV, big) :
(M,η) ⇓ (λa M′,η ′) (M′,η ′[a 7→ (N,η)]) ⇓V

(MN,η) ⇓V

(V, big) :
(M(rec M),η) ⇓V
(rec M,η) ⇓V

The above is a succinct way of representing the rules originally presented
in [16] and an alternative interpretation of the rules defined in [24]. These
versions can be interchanged.

The use of closures is beneficial as it provides a more detailed insight into
what happens during evaluation. This approach also makes subsequent imple-
mentation process simpler, since there is no need to introduce additional substi-
tution procedures for programs.

Lemma 12 For a closure U , there is at most one value V such that U ⇓V .

Proof. There is at most one big step reduction rule can be applied to a closure.
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In the framework of big-step semantics, reduction stops at constructors due to
(I, big). However, to obtain data the evaluation process should proceed beyond
that point and continue reduction under constructors.

Therefore, we define new operators Φop and Φ
op
⊥ with respect to the corre-

sponding operators Φ2 and Φ2
⊥ as follows:

Φ
op(X)(U,a) Def

=
∨
C

(
∃M1, . . . ,Mk,η ,a1, . . . ,ak (U ⇓ (C(M1, . . . ,Mk),η)

∧a =C(a1, . . . ,ak)∧
∧

i≤k X((Mi,η),ai))

)
Φ

op
⊥ (X)(U,a) Def

= a =⊥∨Φ
op(X)(U,a) .

The least and the greatest fixed points of these operators are used to define
further four reduction relations from a closure U to data a:

µ
==⇒ Def

= µ(Φop)
ν
==⇒ Def

= ν(Φop)

µ⊥
==⇒ Def

= µ(Φ
op
⊥ )

ν⊥
==⇒ Def

= ν(Φ
op
⊥ ) .

Each reduction corresponds to inductively defined rules. For instance, the
reduction U ?

==⇒ a can be achieved using the below rules, where ? stands for

either µ or ν . In case of ν the rules are permitting infinite derivations.

U ⇓ (Nil,η)

U ?
==⇒ Nil

U ⇓ (Pair(M1,M2),η) (M1,η)
?
==⇒ a1 (M2,η)

?
==⇒ a2

U ?
==⇒ Pair(a1,a2)

U ⇓ (Lt(M),η) (M,η)
?
==⇒ a

U ?
==⇒ Lt(a)

U ⇓ (Rt(M),η) (M,η)
?
==⇒ a

U ?
==⇒ Rt(a)

For
µ⊥

==⇒ and ν⊥
==⇒ these rules also include the respective axioms U

µ⊥
==⇒⊥

and U ν⊥
==⇒⊥.

Recalling the definitions of various kinds of data – arbitrary (E Def
= ν(Φ⊥)),

finite (Ef
Def
= µ(Φ⊥)), total (Et

Def
= ν(Φ)), and finite total (Eft

Def
= µ(Φ)) – we define

several important equivalences.

Lemma 13

(a) U
µ

==⇒ a iff U
µ⊥

==⇒ a∧a ∈ Eft.

(b) U ν
==⇒ a iff U ν⊥

==⇒ a∧a ∈ Et.
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(c) U
µ⊥

==⇒ a iff U ν⊥
==⇒ a∧a ∈ Ef.

(d) U ν⊥
==⇒ a iff ∀d (appr(d,a)→U

µ⊥
==⇒ d)∧a ∈ E.

Proof. Proceeds in the same way as Lemma 26 in [24] but works with closures
instead of programs. We present the most interesting cases in more detail.

(a) Left to right by straightforward induction on
µ

==⇒. Right to left: the goal

is logically equivalent to the formula U
µ⊥

==⇒ a → (a ∈ Eft → U
µ

==⇒ a),

which we prove by induction on
µ⊥

==⇒. Hence, it suffices to show that

∀a,U(Φ
op
⊥ (P)(U,a)→P(U,a)), where P(U,a) is defined as a∈Eft→U

µ
==⇒ a.

We unfold the definition of Φ
op
⊥ and a = ⊥∨Φop(P)(U,a) to our assump-

tions. The reduction relation
µ

==⇒ is the least fixed point of Φop but since

Eft is defined as the least fixed point of Φ, a is of a constructor form. This
allows us to prove the goal from the available assumptions.

(b) Left to right. We show U ν
==⇒ a→ U ν⊥

==⇒ a by coinduction on ν⊥
==⇒ and

U ν
==⇒ a→ a ∈ Et by coinduction on Et. Right to left by coinduction on ν

==⇒.

(c) Left to right by induction on
µ⊥

==⇒. Right to left: the goal is logically equiv-

alent to a ∈ Ef→ (U ν⊥
==⇒ a→U

µ⊥
==⇒ a) and is proven by induction on Ef.

Proof is similar as in (a).

(d) Left to right is proven as two sub-goals:

(i) U ν⊥
==⇒ a→ a ∈ E proven by straightforward coinduction on E, and

(ii) U ν⊥
==⇒ a→ ∀d(appr(d,a)→ U

µ⊥
==⇒ d), which is logically equivalent

to ∀d,a(appr(d,a)→ ∀ U(U ν⊥
==⇒ a→U

µ⊥
==⇒ d)) and is proven by in-

duction of appr(d,a). It suffices to show ∀d,a(Φ2
⊥(P)(d,a)→ P(d,a)),

where P(d,a) = ∀ U(U ν⊥
==⇒ a→U

µ⊥
==⇒ d). Assume Φ2

⊥(P)(d,a) and

U ν⊥
==⇒ a. We have to show U

µ⊥
==⇒ a. By the assumption U ν⊥

==⇒ a,

U ⇓ (C(M1, . . . ,Mk),η) and a =C(a1, . . . ,ak) with (Mi,η)
ν⊥
==⇒ ai, for all
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i (we use coclosure for ν⊥
==⇒). By the assumption Φ2

⊥(P)(d,a), we

have d = C(d1, . . . ,dk) and P(di,ai) for all i (the option d = a = ⊥ is

excluded since a = C(a1, . . . ,ak)). (Mi,η)
ν⊥
==⇒ ai and P(di,ai) imply

(Mi,η)
µ⊥

==⇒ ai for all i. Therefore, U
µ⊥

==⇒ a, by closure for
µ⊥

==⇒.

Right to left by coinduction on ν⊥
==⇒. Suppose a ∈ E. Let P(U,a) stand

for ∀d (appr(d,a)→ U
µ⊥

==⇒ d). We need to show P(U,a)→ Φ
op
⊥ (P)(U,a).

Suppose that P(U,a). Since a ∈ E, then either a is ⊥ or is it of the form
C(a1, . . . ,ak) for ai ∈ E. If a = ⊥, then Φ

op
⊥ (P)(U,a) is straightforward from

the definition of Φ
op
⊥ . If a =C(a1, . . . ,ak), then appr(C(⊥k),a), which means

that U
µ⊥

==⇒ C(⊥k). Therefore, U ⇓ (C(M1, . . . ,Mk),η) for some M1, . . . ,Mk

and η . Now, for each i ≤ k we need to show that P(Mi,ai). Suppose that

appr(d′,ai) and let d =C(⊥i−1,d′,⊥k−i). Since appr(d,a), we have U
µ⊥

==⇒ d.

Therefore, Mi
µ⊥

==⇒ d′.

11.3 Adequacy for finite computations

To illustrate the link between the denotational and the operational semantics,
computational adequacy needs to be shown. The initial version of the Adequacy
Theorem was drafted in [16] and then modified in [24] to match the recent
developments in the theory. The present version is very close to the one in [24]
and it is adjusted to utilize closures.

Firstly, we define U to be the closed term represented by U , that is

(M,η) = M[η(u)/u | u ∈ FV(M)]

It is possible to present computational adequacy in a general form using closures
and closed terms. Instead, closed programs are used here as they suffice to show
adequacy. A closed program M can be identified with the closure (M, /0), i.e.,
where the environment is empty.

Theorem 2 (Computational Adequacy I) :

(a) M
µ

==⇒ a iff a = JMK∧a ∈ Eft.
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(b) M
µ⊥

==⇒ a iff av JMK∧a ∈ Ef.

(c) M ν
==⇒ a iff a = JMK∧a ∈ Et.

(d) M ν⊥
==⇒ a iff av JMK∧a ∈ E.

Here M is a closed program. Part (a) represents the match between the de-
notational and the operational semantics for finite total data, that is the compu-
tational adequacy. A version for infinite total data is given in (c). The part (b)
for finite partial data and the part (d) for partial arbitrary data.

Before we proceed with the proof of this theorem, we need to prove a number
of supporting lemmas.

Lemma 14 (Correctness)

(a) If U ⇓V , then JUK = JV K.

(b) If U
µ⊥

==⇒ a, then appr(a,JUK).

(c) If U ν⊥
==⇒ a, then av JUK.

Proof. (a) by induction on U ⇓V .

(b) Let P(U,a) Def
= appr(a,JUK). To prove U

µ⊥
==⇒ a→ P(U,a) we proceed by

induction and show Φ
op
⊥ (P)(U,a)→ P(U,a). Suppose Φ

op
⊥ (P)(U,a). If a = ⊥,

then P(U,a) holds. If Φop(P)(U,a), then U ⇓ (C(M1, . . . ,Mk),η), a =C(a1, . . . ,ak),
and P((Mi,η),ai) for every i ≤ k. Hence, by (a), JUK = J(C(M1, . . . ,Mk),η)K =
C(J(M1,η)K, . . . ,J(Mk,η)K). Since P((Mi,η),ai), we have appr(ai,J(Mi,η)K) and,
therefore, appr(a,JUK)).

(c) By Lemma 11(b), we need to show that U ν⊥
==⇒ a and appr(d,a) implies

appr(d,JUK). The finite approximation is defined with the operator Φ2
⊥, so we can

show that U ν⊥
==⇒ a and appr(d,a) implies U ν⊥

==⇒ d. Since U ν⊥
==⇒ d and d ∈ Ef,

we have U
µ⊥

==⇒ d by Lemma 13(b). Therefore, appr(d,JUK) by (b).

We define D0 as a the set of compact elements of D. Every element a in D0
has a natural rank, rk(a) ∈ N, which satisfies the following:

rk1 If a has the form C(a1, . . . ,ak) for a data constructor C, then a1, . . . ,ak are
compact and rk(a)> rk(ai) (i≤ k).
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rk2 If a has a form F( f ), then for every b ∈ D, f (b) is compact with rk(a) >
rk( f (b)). Moreover, there exists a compact b0 v b with rk(a)> rk(b0) and
f (b0) = f (b).

Based on the above, for every compact a we assign a set of closed programs
Cl(a) by induction on rk(a). Note that for a ∈ E0 (i.e., Ef(a)), U ∈ Cl(a) is equiv-

alent to U
µ⊥

==⇒ a. The definition is a generalized version of the one in [16] and

is used in [24].

Cl(⊥) = the set of all closures
Cl(C(a1, . . . ,ak)) = {U | ∃M1, . . . ,Mk,η , (U ⇓ (C(M1, . . . ,Mk),η)∧∧

i≤k

(Mi,η) ∈ Cl(ai))}

Cl(F( f )) = {U | ∃x,M,η , (U ⇓ (λxM,η)∧
∀b ∈ D0 (rk(b)< rk(F( f ))→
∀N ∈ Cl(b)(M,η [N/x] ∈ Cl( f (b))))}

Lemma 15 (Monotonicity) For a,b ∈ D0, if av b, then Cl(a)⊇ Cl(b).

Proof. The proof is by induction on rk(a). Assume av b.
Case a =⊥ is trivial as by the definition of Cl(⊥) for any b Cl(⊥)⊇ Cl(b).

Case a = Nil. In this case b must also be Nil. Hence, Cl(Nil) = Cl(Nil).

Case a = Lt(a). In this case b must also be of the form Lt(b). Show Cl(Lt(a′))
is a superset of Cl(Lt(b′)). Assume U ∈ Cl(Lt(b′)). This means that there is
(M,η), s.t. U ⇓ (Lt(M),η)∧ (M,η) ∈ Cl(b′). By i.h., Cl(a′) ⊇ Cl(b′) because by
rk1, rk(a′)< rk(a). Therefore, the statement remains true if we replace b′ by a′

to get U ⇓ (Lt(M),η)∧ (M,η) ∈ Cl(a′). Hence, U ∈ Cl(Lt(a′)).

Cases a = Rt(a) and a = Pair(a,b). Same strategy as above.

Case a = F( f ). Since av b, b = F(g) with f v g, pointwise. Assume U ∈Cl(b).
We have to show U ∈ Cl(a). Since U ∈ Cl(b), there exist x,M,η such that (1)
U ⇓ (λxM,η) (2) whenever rk(c) < rk(b), then for all N ∈ Cl(c), (M,η [N/x]) ∈
Cl(g(c)). To show that U ∈ Cl(a), it suffices to show that (2′) whenever rk(c) <
rk(a), then for all N ∈Cl(c), (M,η [N/x])∈Cl( f (c)). To prove (2′), assume rk(c)<
rk(a) and N ∈Cl(c). We have to show (M,η [N/x])∈Cl( f (c)). By rk2, there exists
a compact c0 v c such that rk(c0)< rk(b) and g(c0) = g(c). Since rk(c)< rk(a), it
follows by induction hypothesis that N ∈ Cl(c0). Since rk(c0) < rk(b), it follows
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by (2) that (M,η [N/x])∈Cl(g(c0)). Since f v g pointwise, it follows f (c)v g(c) =
g(c0). By rk2, rk( f (c)) < rk(a) and rk(g(c0)) < rk(b). Hence, by the induction
hypothesis, (M,η [N/x]) ∈ Cl( f (c)).

Lemma 16 (Reducibility of closures) U ∈ Cl(a) iff U ⇓V for some V ∈ Cl(a).

Proof. Immediate from the definition of Cl(a).

Lemma 17 (Approximation) If a is compact and M is a closed program with
av JMK, then (M,η) ∈ Cl(a).

Proof. This is a special case of Lemma 15 in [16].

Lemma 18 If a ∈ Ef and U ∈ Cl(a), then U
µ⊥

==⇒ a.

Proof. Proof by induction on Ef. We show a ∈ Ef → ∀U (U ∈ Cl(a)→ U
µ⊥

==⇒

a). Let P(a) = ∀U (U ∈ Cl(a)→ U
µ⊥

==⇒ a). By induction it suffices to show

Φ⊥(P)(a)→ P(a). Unfolding the definition of the operator, we have a = ⊥∨
Φ(P)(a), where Φ(P)(a) means that there exist a1, . . . ,ak, such that a=C(a1, . . . ,ak)

and P(ai) for all i, such that 1≤ i≤ k. Assume U ∈ Cl(a). Show U
µ⊥

==⇒ a. It suf-

fices to show a = ⊥∨Φop(µΦ
op
⊥ )(U,a) (by closure). In case a = ⊥ the proof is

trivial as we take left side of the disjunction. In case a is of a constructor form,
we have the assumptions P(ai) as well as U ∈ Cl(a1, . . . ,ak), which means that

(Mi,η) ∈ Cl(ai). Hence, (Mi,η)
µ⊥

==⇒ ai.

Now we have all the lemmas to prove the first Adequacy Theorem. For the
reader’s convenience let us reiterate the statements, replacing v by vE since,
taking into account the properties of domain ordering stated earlier, this does
not change the meaning of the statements.

(a) M
µ

==⇒ a iff a = JMK∧a ∈ Eft.

(b) M
µ⊥

==⇒ a iff avE JMK∧a ∈ Ef.

(c) M ν
==⇒ a iff a = JMK∧a ∈ Et.

(d) M ν⊥
==⇒ a iff avE JMK∧a ∈ E.
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Proof. Recall that a closed program M is identified with the closure (M, /0) and
that M = (M, /0) and hence JMK = J(M, /0)K.

We first start by showing some connections between sub-parts of the theorem.
Namely, in Thm. 2, part (b) implies part (a), and part (d) implies part (c) (more
precisely its general form with closures U instead of closed terms M).

(b) implies (a): Assume (b). We show (a):

M
µ

==⇒ a

iff

M
µ⊥

==⇒ a and a ∈ Eft (by Lemma 13(a)

iff
avE JMK and a ∈ Eft (by (b) and since Eft ⊂ Ef)

iff
a = JMK and a ∈ Eft (since Eft ⊂ Et and as remarked after the axiom (11.1),

avE b and a ∈ Et implies a = b)

(d) implies (c): Assume (d). We show (c):

M ν
==⇒ a

iff

M ν⊥
==⇒ a and a ∈ Et (by Lemma 13(b)

iff
avE JMK and a ∈ Et (by (d) and since Et ⊂ E)

iff
a = JMK and a ∈ Et since avE b and a ∈ Et implies a = b

Consequently, it suffices to prove (b) and (d).

(b): Left to right, i.e., M
µ⊥

==⇒ a→ a vE JMK∧ a ∈ Ef. Assume M
µ⊥

==⇒ a. By

lemma 14(b), appr(a,JMK) and by lemma 11(a), a ∈ Ef.
Right to left. Assume a vE JMK∧ a ∈ Ef. By lemma 17, M ∈ Cl(a) and by

lemma 18, M
µ⊥

==⇒ a.

(d): Left to right, i.e., M ν⊥
==⇒ a→ avE JMK∧a∈ E is proven by lemmas 14(c)

and 13(d).
Right to left: avE JMK∧a ∈ E→M ν⊥

==⇒ a. If avE JMK, then av JMK. There-

fore, by lemma 17, JMK ∈ Cl(a). By lemma 18, M ν⊥
==⇒ a.
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This concludes the proof of adequacy for finite computations.

11.4 Small-step semantics

In order to define structural operational semantics that corresponds to the above
natural semantics, we introduce the notion of an extended closure, which is an
application of a closure to a closure. Correspondingly, we give rules for evalu-
ating these extended closures. An alternative would be using Plotkin-style en-
vironments [99] and rules which update environments in the premise. Instead,
we update the environment for subsequent transitions, discarding the original
environment. We find this approach cleaner and more suitable for our imple-
mentation.

- Every closure is an extended closure;

- if U is an extended closure and U0 is a closure, then U U0 is an extended
closure;

- if U is an extended closure, ~Cl is a list of clauses, and η is an environment,
then case U of (~Cl,η) is an extended closure.

We use the letter V for values (as before), U,U ′ for extended closures, U0,U1
for closures, and we write η [~u 7→ (~M,η)] for η [u1 7→ (M1,η), . . . ,uk 7→ (Mk,η)].

While big-step semantics stops at data constructors, we also need to look at
infinite computations, which continues under data constructors. Constructors
may have multiple arguments and therefore there is a need of computation that
that runs in parallel to obtain the denotated value. This is why the small-step re-
duction rules are needed. We define small-step reduction relations ( ) between
closures. These relations terminate at values.

The rules of the small-step semantics are presented below. There is no rule
that corresponds to (I, big). This is because the purpose of small-step semantics
is to evaluate an expression one step at a time and since V is already a value, the
reduction from V  V is redundant.

The rest of the big-step rules are intuitively represented by the small-step
ones. It is, however, necessary to add more precision to the small-step rules. We
introduce three variations of the rules III and IV to make distinction between
different forms of closures and handle them appropriately. The rules are ordered
by letters with respect to their priority. A closure of the form (MN,η) can be
broken down using (IV a, small). Then we look at the first closure to determine
whether it needs to be broken down further, or it is already a value, and so on.
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• (II, small) : (a,η) η(a)

• (III a, small) : (case M of {Cl1, ...,Cln},η) case (M,η) of ({Cl1, ...,Cln},η)

• (III b, small) : case (C(M1, ...,Mk),η) of ({...;C(u1, ...,uk)→ N; ...},η0) 
(N,η0[u1 7→ (M1,η), ...,uk 7→ (Mk,η)])

• (III c, small): U  U ′

case U of ({Cl1, ...,Cln},η) case U ′ of ({Cl1, ...,Cln},η)

• (IV a, small) : (MN,η) (M,η)(N,η)

• (IV b, small) : (λa M,η)U0 (M,η [a 7→U0])

• (IV c, small) : U  U ′

UU0 U ′U0

• (V, small) : (rec M,η) (M(rec M),η)

There is exactly one applicable rule for each extended closure and, therefore,
 is a deterministic relation. We define  n as the n-times repetition of  , and
 ∗ as the transitive and reflexive closure of .

Before proving the interchangeability between big and small-step rules, we
prove specific characteristics of extended closures that are applications UU0 or
have the form ({Cl1, . . . ,Clh},η).

Lemma 19 If an extended closure UU0 evaluates to a value V in n small steps,
then U reduces to (λx M,η) in k steps and (M,η [x 7→ U0]) reduces to V in l
steps for some term λx M and some environment η and program M, where
(k ≤ n)∧ (l ≤ n).

Proof. (a) Let UU0 n V , where n ≥ 0. We proceed by induction on n and con-
sider two cases:

Case U = (λx M,η). We have UU0 =(λx M,η)U0. By (IV b, small) (λx M,η) 1

(M,η [a 7→U0]), so by (a) (M,η ′[a 7→U0]) n−1 V . Also, since U = (λx M,η) we
know that U reduces to (λx M,η) in zero steps. Hence, U  0 (λx M,η) and
(M,η [a 7→U0]) reduces to V in n−1 steps.
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Case U 6= (λx M,η). We need to show (U k (λx M,η)) and (M,η [x 7→U0]) l

V . By (IV c, small) U  1 U ′, so we know that U ′U0 n−1 V . Hence, by i.h. we
get the following:

(i) k ≤ n−1

(ii) l ≤ n−1

(iii) U ′ k (λx M,η)

(iv) (M,η [x 7→U0]) l V

Since U reduces to U ′  k (λx M,η) in one step, we know that U reduces to
(λx M,η) in K + 1 steps. Since we know (i) k ≤ n− 1 then also k+ 1 ≤ n holds.
By (ii) and (iv) we know that l ≤ n−1 but that also means that l ≤ n.

Lemma 20 If a case U of ({Cl1, . . . ,Clh},η) evaluates to V in n small steps,
then U reduces to (C(M1, . . . ,M j),η

′) in k steps and (N,η [u1 7→ (M1,η
′), . . .(u j 7→

M j,η
′)]) reduces to V in l steps for some term C(M1, . . . ,M j), an environment η ′,

a program N and a closure Cl, where Cl ∈ {Cl1, . . . ,Clh}, Cl = C(u1, . . . ,u j)→ N,
(k ≤ n), and (l ≤ n).

Proof. Let case U of ({Cl1, . . . ,Clh},η) n V , where n≥ 0. We proceed by induc-
tion on n and consider two cases:

Case U = (C(M1, . . . ,M j),η
′). Let (Cl ∈ {Cl1, . . . ,Clh}∧Cl =C(u1, . . . ,u j)→N).

By (III b, small) it takes one step from case (C(M1, . . . ,M j),η
′) of ({Cl1, . . . ,Clh},η)

to (N,η [u1 7→ (M1,η
′), . . . ,u j 7→ (M j,η

′)]). Since U = (C(M1, . . . ,M j),η
′), we know

that U reduces to (C(M1, . . . ,M j),η
′) in 0 steps. Hence, (N,η [u1 7→ (M1,η

′), . . . ,u j 7→
(M j,η

′)]) n−1 V . So in both cases the number of steps is smaller or equal to n.

Case U 6= (C(M1, . . . ,M j),η
′). By (III c, small), case U ′ of ({Cl1, . . . ,Clh},η) 1

V , so by i.h. we get the following:

(i) k ≤ n−1

(ii) l ≤ n−1

(iii) Cl ∈ {Cl1, . . . ,Clh}∧Cl =C(u1, . . . ,u j)→ N

(iv) U ′ k (C(M1, . . . ,M j),η
′)

(v) (N,η [u1 7→ (M1,η
′), . . .(u j 7→M j,η

′)]) l V
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Since U reduces to U ′ in one step and U ′ k (C(M1, . . . ,M j),η
′), we know that

U k+1 (C(M1, . . . ,M j),η
′). Since we know (i) k≤ n−1 then also k+1≤ n holds.

By (ii) and (v) we know that l ≤ n−1 but that also means that l ≤ n.

The following lemma proves the interchangeability of big-step and small-step
semantics.

Lemma 21 For a closure U and a value V , U ⇓V iff U  ∗ V .

Proof. First, we proceed left to right (U ⇓ V ⇒U  ∗ V ) by induction on deriva-
tion.

Case U =V . By (I, big) we know V ⇓V and also V  0 V by reflexivity.

Case U = (a,η). We need to show (a,η) ∗ V . By (II, small) (a,η); η(a),
hence by i.h. (η(a) ⇓V ⇒ η(a) ∗ V ) and (II, big) we get (a,η) ∗ V .

Case U = (case M of {. . . ;C(u1, . . . ,uk)→ N; . . .},η). We first need to show
that (case M of {. . .C(u1, . . . ,uk)→ N; . . .},η) reduces to V in some steps (∗). By
(III a, small), (case M of {. . .C(u1, . . . ,uk)→ N; . . .},η) reduces in some steps (∗)
to case (M,η) of ({. . .C(u1, . . . ,uk)→ N; . . .},η). By i.h. (M,η) reduces in (∗)
steps to (C(M1, . . . ,Mk),η

′). Hence, by applying (III c, small) multiple times it
suffices to show:

case (C(M1, . . . ,Mk),η
′) of ({. . .C(u1, . . . ,uk)→ N; . . .},η) ∗ V (11.2)

We apply (III b, small) to case (C(M1, ...,Mk),η) of ({...;C(u1, ...,uk)→ N; ...},η0)
to get (N,η0[u1 7→ (M1,η), ...,uk 7→ (Mk,η)]) in one reduction step. This new clo-
sure reduces to V by i.h. (N,η [u1 7→ (M1,η

′), . . . ,uk 7→ (Mk,η
′)]) ∗ V . Therefore,

we can conclude that eq. (11.2) holds.

Case U = (MN,η). We need to show (MN,η) ∗ V . By (IV a, small) we re-
duce (MN,η) to (M,η)(N,η). Then by i.h.(a) and applying (IV c, small) multiple
times it suffices to show that (λa M′,η ′)(N,η) ∗ V . Since (λa M′,η ′)(N,η) re-
duces to (M′,η ′[a 7→ (N,η)]) by (IV b, small) and by i.h M′,η ′[a 7→ (N,η)] ∗ V .
We can conclude that (λa M′,η)(N,η) also reduces to V .

Case U = (rec M,η). Show (rec M,η)  ∗ V . By (V, small) (rec M,η)  
(M(rec M),η). Hence, it suffices to show (M(rec M),η) ∗ V , which corresponds
to the i.h..
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Now we proceed right to left (U  n V ⇒U ⇓V ) by induction on n.

Base case: n = 0. Let U =V . By (I, big) V ⇓V .
Step: n > 0.
I.h. ∀n.(n > 0)→U  1 U ′∧U ′ n−1 V ⇒U ′ ⇓V . We proceed by cases:

• Case U = (a,η). Let (a,η) n V . Show: (a,η) ⇓ V . Since (a,η) reduces
to η(a) in one step by (II, small) then η(a) n−1 V . Consequently, by i.h.
η(a) ⇓V , Finally, applying (II, big) to the latter we get (a,η) ⇓V .

• Case U = (MN,η). Let (MN,η)  n V . Show: (MN,η) ⇓ V . By (IV a,
small) (MN,η) 1 (M,η)(N,η), so by i.h. (M,η)(N,η) n−1 V . Applying
lemma 19 to the latter we we get:

(i) k ≤ n−1

(ii) l ≤ n−1

(iii) (M,η) k (λx M′,η ′)

(iv) (M′,η ′[x 7→ (N,η)]) l V

Since (M,η) k (λx M′,η ′) and k ≤ n−1 then by i.h. (M,η) ⇓ (λx M′,η ′).
Similarly, since l ≤ n− 1 we know that (M′,η ′[x 7→ (N,η)]) ⇓ V . Hence by
(IV, big) we get (MN,η) ⇓V .

• Case U = (case M of Cl1, . . . ,Clm,η). Let (case M of Cl1, . . . ,Clm,η) n V .
Show: (case M of Cl1, . . . ,Clm,η) ⇓ V . By (III a, small) we can reduce this
closure to case (M,η) of (Cl1, . . . ,Clm,η) in one step, so by i.h. this reduces
to V in n−1 steps. Applying lemma 20 to the the latter we get:

(i) k ≤ n−1

(ii) l ≤ n−1

(iii) Cl ∈ {Cl1, . . . ,Clh}∧Cl =C(u1, . . . ,u j)→ N

(iv) (M,η) k (C(M1, . . . ,M j),η
′)

(v) (N,η [u1 7→ (M1,η
′), . . .(u j 7→M j,η

′)]) l V

Since (M,η) k (C(M1, . . . ,M j),η
′) and k≤ n−1 then (M,η)⇓ (C(M1, . . . ,M j).

Similarly, since (N,η [u1 7→ (M1,η
′), . . .(u j 7→M j,η

′)]) reduces to V in l steps
and l ≤ n−1, we get (N,η [u1 7→ (M1,η

′), . . .(u j 7→M j,η
′)]) ⇓V . So, by (III,

big) (case M of Cl1, . . . ,Clm,η) ⇓V .
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11.5. Adequacy for infinite computations

• Case U = (rec M,η) Let (rec M,η) n V . Show: (rec M,η) ⇓ V . We know
that (rec M,η) reduces to (M(rec M),η) in one step by (V, small). Thus,
(M(rec M),η) reduces to V in n−1 steps. Consequently, by i.h. we know
that (M(rec M),η) ⇓ V . Finally, applying (V, big) to the latter, we get
(rec M,η) ⇓V .

Now that the small semantics is defined we can proceed to proof adequacy
for infinite computations.

11.5 Adequacy for infinite computations

Continuing computation under constructors may be tricky. If a constructor has
multiple arguments, it may happen that some of them diverge, while others
terminate. To solve this issue one needs to perform parallel computation in
order to obtain a result that is close enough to the semantic value. With this is
mind, special constructs called closure-terms are defined inductively as follows:

• every extended closure is a closure-term;

• if C is a constructor with arity k and Wi (i ≤ k) are closure-terms, then
C(W1, . . . ,Wk) is a closure-term.

Note that a closure and a finite total data are both closure-terms. For a closure-
term W , we use W⊥ to denote the finite data obtained by replacing all the ex-
tended closures in W with ⊥.

We extend  from a relation between extended closures to a relation be-
tween closure-terms by adding the following two rules.

(VI) (C(M1, . . . ,Mk),η) C((M1,η), . . . ,(Mk,η))

(VII) Wi W ′i (i = 1, . . . ,k)
C(W1, . . . , ,Wk) C(W ′1, . . . , ,W

′
k)

Here, C ranges over all constructors. Note that Nil Nil by rule (VII). This set
of rules is non-overlapping and covers all the cases. Therefore, there is exactly
one applicable rule for each closure-term. A closure-term W (n) denotes W ′ such
that W  n W ′.

Lemma 22 (Accumulation) If W W ′, then W⊥vW ′⊥. Therefore, W (n)
⊥vW (m)

⊥
for n≤ m.
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11.5. Adequacy for infinite computations

Proof. Induction on the structure of W .
Case W is an extended closure. We replace every extended closure with ⊥,

which means W⊥ =⊥ and, by the property of domain ordering (i), ⊥vW ′⊥.
Case W is of a form C(Wi, . . . ,Wk). Since W is of a closure-term of a construc-

tor form, W  C(W ′i , . . . ,W
′
k) by (VII). By i.h. if Wi  W ′i (i = 1, . . . ,k), then

Wi⊥ vW ′i⊥. Hence, W1 vW ′1, . . . ,Wk vW ′k . Applying the properly of the domain
ordering (ii), C(Wi, . . . ,Wk)vC(W ′i , . . . ,W

′
k).

For a closure U , finite approximation of the value of U after n computation
steps is denoted by U (n)

⊥. The following lemma shows that every finite approx-
imation of the value of U is obtained sooner or later, making the computation is
complete.

Lemma 23 (Adequacy for finite values) U
µ⊥

==⇒ a→∃n(avU (n)
⊥).

Proof. Let P(U,a) Def
= ∃n(a vU (n)

⊥). We need to show U
µ⊥

==⇒ a→ P(U,a). By

induction, it suffices to show Φ
op
⊥ (P)(U,a)→ P(U,a). If a = ⊥, the statement of

the lemma holds by the property of domain ordering (i). If we have

(U ⇓ (C(M1, . . . ,Mk),η))∧a =C(a1, . . . ,ak)∧
∧
i≤k

(∃ni a j v (Mi,η)(ni)
⊥),

then, for n, the maximum of ni (i ≤ k), C(a1, . . . ,ak) vC((M1,η), . . . ,(Mk,η))(n)⊥
by Lemma 22. Also, we have U (m) = (C(M1, . . . ,Mk),η) for some m by Lemma 21,
and (C(M1, . . . ,Mk),η) C((M1,η), . . . ,(Mk,η)) by (VI). Hence, avU (m+n+1)

⊥.

Since (U (n)
⊥)n is an increasing sequence by Lemma 22, we define

U (∞) =
⊔
n

U (n)
⊥

and we say that the closure U infinitely computes the data U (∞).
We extend the definition of U for a closure U to a closure-term W and define

W as the closed term represented by W .

Theorem 3 (Computational Adequacy II) If JMK ∈ E, then M(∞) = JMK.

Proof. Closure-terms have the following properties, which can be shown by in-
duction on the definition .

(a) For closure-terms W and W ′, W  W ′→ JW K = JW ′K .

(b) For a closure-term W , W⊥ v JW K.
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11.5. Adequacy for infinite computations

Here we need these properties only for a special case of closed terms. We start
with M and reduce it to obtain M(n) and taking into account the above properties,
we have M(n)

⊥ v JMK. Since this holds for every n, we have M(∞) v JMK.

By Theorem 2 (d), M ν⊥
==⇒ JMK. Therefore, ∀d (appr(d,JMK)→M

µ⊥
==⇒ d) by

Lemma 13(d), considering the case that U = (M, /0). Therefore, by Lemma 23,
we have ∀d (appr(d,JMK)→ ∃n d vM(n)

⊥). Since d vM(n)
⊥→ appr(d,M(∞)), we

have ∀d (appr(d,JMK)→ appr(d,M(∞))). From this it follows that JMK vM(∞) by
Lemma 11(b).
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Part III

Program extraction in practice
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Chapter 12

Development of the proof system
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Here we present PRAWF, an interactive proof assistant for program extraction
that is build based on IFP.

Originally PRAWF was developed as an education tool for teaching natural
deduction. In the first version it supported natural deduction for first order
logic, enabling students to build proof trees and pretty print them using LATEX.
With the focus shifting towards program extraction, proofs became longer and,
therefore, visualisation through LATEX started to be inefficient and was dropped.
The proof assistant is implemented in Haskell, a language, where side effects
are minimized through separation of its purely functional part, which has no
side effects, from its IO (input-output) part, which can have them. Functional
style of programming is suitable for algorithmically complex programs like this
one. Creation of data structures which closely correspond to the theory that we
outlined earlier, for instance formulas and proofs, is easy and well supported in
Haskell.

12.1 General structure of PRAWF

PRAWF encompasses the following components, namely:

• the logic component (LC)
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• the realizablity and program extraction component (RPEC)

• the execution component (EC)

The logic component forms the base of the system. It covers first order logic,
dual rules for induction and coinduction, closure and coclosure, as well as the
usual equational reasoning rules like symmetry, reflexivity and congruence. In
other words, this component corresponds to the IFP (and IFP’). The inference
rules defined in this module are used for proof construction.

Realizability should be distinguished from program extraction. In the first
case we consider elements of the Scott domain of realizers and in the second
case we are dealing with program constructs that are used to represent these
realizers. Realizability in this case is associated with RIFP and it serves as a link
between the logic part of the system and the program extraction part. In terms
of implementation, realizability and program extraction are integrated into one
component, i.e., RPEC.

The execution component is an extra facility enabling users to execute their
extracted programs.

From a user perspective, LC and RPEC correspond to the “proving-extracting”
mode, where proofs are constructed and programs are extracted; EC corresponds
to the execution mode, where one can run the extracted programs.

PRAWF consists of 19 modules, which can be divided based on their primary
purpose into (a) logic-related modules, (b) realizability and extraction-related
modules, (c) execution module, (d) IO modules, and (d) support modules (see
fig. 12.1). IO modules cover interaction with the user, and the main modules
here are Mode and Prover. There are also two IO modules that also fall into the
support group - ReadShow, which processes the input and shows the output, and
Langandctxpreload, which helps to load content for creating a proof environ-
ment.

Intuitively, the first three groups of modules correspond to the three compo-
nents outlined above. Support modules are not necessarily directly related to
any specific component. In terms of implementation, these groups of modules
are closely intertwined. IO modules “orchestrate” interaction between various
parts of the system. For instance, the Prover module links all the logic mod-
ules together. It also connects LC and RPEC through a function, which triggers
program extraction. Prover includes functions that help creating a proof envi-
ronment, work with recorded proof tactics, save theorems, etc. The Mode module
is on a structurally higher level, guiding the user to select between the “proving-
extracting” mode and the execution mode in PRAWF.

PRAWF uses goal-directed proof construction approach, which is common for
most proof assistants. A proof begins with a goal formula. A user can apply
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Figure 12.1: Intuitive structure of PRAWF

admissible IFP rules to transform the goal or break it down into smaller sub-
goals (see fig. 12.2). Rules are applied in a backwards fashion. Each of the new
sub-goals is put into the goal stack. Goals are processed one by one as shown by
purple arrows in fig. 12.3. Once the end of a branch is reached (purple nodes),
the previous available (unprocessed) internal node becomes the next goal. Goal
labels inside of the nodes in fig. 12.3 correspond to goal labels as they would be
displayed in PRAWF.

Generally proof steps are low level and correspond directly to the proof rules.
However, there are minor automation implement to improve usability. There is
no notion of a tactic as a composition of rules as in, for example, Coq. However,
we use the notion of tactic record of a sequence of proof steps. This record can
then be used to “replay” the proof. In this respect, PRAWF does not as many
functionalities as the established proof assistants. However, the main focus of
our proof assistant in not on functionalities but rather on a proof structure that
works well for extraction.
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Figure 12.2: Generation of new goals through rule application
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12.2. Logic component

12.2 Logic component

The logic-related modules contain the machinery for constructing proofs. Here
the notions like language, proof and rule are defined. This group of modules
consists of Prover, Language, Proof, PlProof and Step.

Language In this module the core concepts like language, context, formula,
predicate and term are defined.

A Language is a record that contains a list of sorts, constants, functions, pred-
icates and operators:

data Language = Lang {
sorts :: [String] ,
constants :: [(String,Sort)] ,
functions :: [(String,Type)] ,
predicates :: [(String,Arity)] ,
operators :: [(String,Arity)]

}
deriving (Show, Read)

Here Sort is represented by a string, Arity is a list of sorts, and Type is a tuple,
consisting of an arity and a sort.

The use of the record type enables the users to define their own language and,
hence, set up their specific proof environment. Aside of the language, the proof
environment also comprises of a context, axioms, and declarations. The Contex
is also defined as a record and includes fields for object variables, predicate
variables, and operator variables:

data Context = Ctxt {
variables :: [(String,Sort)] ,
pvars :: [(String,Arity)] ,
ovars :: [(String,Arity)]

}
deriving (Show, Read)

To add axioms and declarations, one needs a syntax for terms, formulas, predi-
cates, and operators. These are defined as follows:

data Term = Var String | Const String | Fun String [Term]
deriving (Show,Eq,Read)

data Formula = Predic Predicate [Term]
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12.2. Logic component

| And Formula Formula
| Or Formula Formula
| Imp Formula Formula
| Bot
| All (String,Sort) Formula
| Ex (String,Sort) Formula
| LetF Decl Formula

deriving (Show,Eq,Read)

data Predicate = PrVar String
| PrConst String
| Compr [(String,Sort)] Formula
| Mu Op
| Nu Op
| OpApp Op Predicate

deriving (Show,Eq,Read)

data Op = OpV String
| OpA (String,Arity) Predicate

deriving (Show,Eq,Read)

The idea of introducing the language in the above format did not come
straight away. In the initial stages only formulas and terms were defined. That
turned out to be inefficient as with the growing complexity of the logical struc-
tures and introduction of declarations and axioms the need for consistency and
correctness checks become apparent. These checks are performed whenever a
proof environment is loaded as well as at certain stages of proof construction
and program extraction. Formulas, predicates, operators and their sub-parts are
checked against the language and the context to ensure that the correct sorts,
arities and types are used at all times.

Implementation of variable substitution was one of the trickiest tasks that
required constant re-evaluation and updating. Certain inference rules require
substitution and it needs to be performed on all kinds of expressions and, there-
fore, constant tracking of free and bound variables is essential. Since atomic
formulas use a predicate in their structure:

(Predic Predicate [Term])

and a predicate can be a λ -abstraction, which uses a formula in its structure:

(Compr [(String,Sort)] Formula),
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12.2. Logic component

keeping track of the variables is not a trivial matter because of constant switching
between the predicates and formulas. Predicates and operators are also defined
in terms of each other, causing the same difficulty during substitution and vari-
able tracking.

Step, Proof, PlProof The rules used in PRAWF are defined in Step in the fol-
lowing way:

data Rule = AssuR | UseWithR | UseThmR | UseThmWithR
| AndiR | AndelR | AnderR
| OrilR | OrirR | OreR | OreAssuR
| ImpiR | ImpeR
| EfqR | RaaR
| AlliR | AlleR | AlleRF
| ExiR | ExeR
| LetR | DeclR | NormR | UnfoldR
| IndR | HSIndR | SIndR | ClR | CoclR
| CoiR | HSCoiR | SCoiR
| EqReflR | EqSymR | EqCongR | EqCongfR | EqCongruR

deriving (Show, Read)

These rules correspond to the usual IFP rules and include some extra rules to
enhance the interaction process for the users. Here AssuR corresponds to the
use rule and the Use... rules are just its variations. OreAssuR is an enhanced
variant of the disjunction elimination rule and so are the various versions of the
congruence rule. LetR allows users to introduce declarations ad hoc and NormR
and UnfoldR are used for normalization and unfolding of a formula accordingly.
Here we also include reductio ad absurdum rule, which, although being a classical
logic rule, can still be used in our system for non-computational formulas. Use of
this rule with computational formulas is also possible but then extraction might
not work anymore and just return an identity function. These rules are linked to
how the users interact with the system. A very close notion related to these rules
are proofs.

The data type of Proof is defined inductively, using constructors that corre-
spond to the IFP proof rules, combined with the relevant sub-proof(s) or a label.

data Proof =
AnProof Label

| AndIntr Proof Proof
...
| Ind Predicate Proof
...
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AnProof Label stands for a use rule, where the assumption that is applied is
referenced by Label. This label is a string, for example u. Other proofs are built
up by combining smaller proofs under the corresponding proof constructor. For
example, the rule for induction:

Φ(P)⊆ P
µ(Φ)⊆ P

is defined as Ind Predicate Proof.

Here Predicate is expected to be of a form µ(Φ) and Proof represents the con-
nection between Φ(P)⊆ P and µ(Φ)⊆ P.

Proof trees in PRAWF are constructed in a backwards manner. Internally they
are built by constantly recording the state of the system at every step of the
proof. A State is a record consisting of number of fields, the most relevant of
which is the stplpproof – partial proof. A partial proof is a record that contains
a proof object, a list of goals that need to be proven for the proof to be complete,
as well as lists of available assumptions, theorems, and declarations. Each goal
is a record, consisting of a goal formula, a list of goal-specific assumptions, a
context, and a list of declarations.

When a user builds a proof tree, the stepI function is utilized to move from
one state to another, taking the user’s input into consideration. The stepI func-
tion checks whether it is possible to apply the rule that the user has entered.
This is done through refinement processes defined for each of the rules in the
PlProof module. Going back to the induction rule, here the refinement process
proves that one indeed can get Φ(P) ⊆ P from µ(Φ) ⊆ P. If that is the case, the
state updates and the user can continue building the proof tree.

Once the proof is completed or whenever it is necessary to check that the
proof tree is indeed built correctly, the endFormula function is used to go through
the proof in the opposite (forward) direction. If the endFormula can recreate the
initial goal, then the proof is correct.

The strategy for endFormula is straightforward. For the use rule, endFormula
looks up the label it is given in the list of assumptions and if it is there, then
it returns the corresponding formula. For the ∧+ rule, endFormula recursively
calls itself to obtain the end formulas of the proofs it gets as an input. The
obtained formulas are then merged using the And constructor. For the ∧−l rule,
endFormula recursively calls itself to obtain the end formula of the proof it was
given as an input. If the obtained formula is a conjunction, then the left side of
this conjunction is returned. Other rules follow the same principle.

Once the proof is completed, there is an option to save it as a theorem, which
can then be reused in more complex proofs.

While proofs are done in IFP, there is an internal procedure within the transIFP
converts IFP proofs into IFP’ proofs. It is a recursive function, which in case of
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induction and coinduction adds an internally computed monotonicity proof to
the premise of the inference rule.

12.3 Realizability and program extraction
component

With the proof completed, one can start considering RPEC. The three core mod-
ules related to this component are:

(a) Program, in which the data type of Program is defined together with the
procedures for program substitution and normalization;

(b) OpsemEC, which covers the operational semantics;

(c) Extraction, which contains the main program extraction algorithm pe.

Program To implement the notion of a program, we first define what a pro-
gram constructor and a clause are:

data Constructor = Nil
| Lt
| Rt
| Pair
deriving (Show, Read, Eq)

type Clause = (Constructor, [String], Program)

In the Clause definition the list of strings refers to all local bound variables. For
example, in (Pair, ["a", "b"], prog) the variables "a" and "b" are bound in
prog. Now, we define Program inductively as follows:

data Program = ProgVar String
| ProgCon Constructor [Program]
| ProgCase Program [Clause]
| ProgApp Program Program
| ProgAbst String Program
| ProgRec Program
deriving (Show, Read, Eq)

ProgVar corresponds to the program variable; ProgCon Constructor [Program]
represents programs that use constructors. The constructor Nil is used when the
program list is empty. A list of causes is used in ProgCase Program [Clause]
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to display all the possible options for the program M in an “or case”, that is
case M of {. . . ; C(~x)→ N; . . .}. ProgApp Program Program is program applica-
tion and ProgRec Program is a recursive program. ProgAbst String Program
corresponds to λx M, where M is a program.

OpsemEC In the OpsemEC module we define the notions of a closure, an envi-
ronment and an extended closure.

data Closure = Clos Program Env

type Env = [(String,Closure)]

Extended closures are of three kinds:

• ECCL Closure corresponds to a simple extended closure U which is of a
form (M,η);

• ECCA EC [Clause] Env is a way of expressing case U of ({Cl1, . . . ,Cl2},η);

• ECAP EC Closure represents application of an extended closure to a clo-
sure.

This module also implements small step semantics that uses extended clo-
sures, as outlined in chapter 11. This approach enables to avoid complex sub-
stitution procedure during program evaluation. For our practical needs, big step
semantics is redundant.

Extraction In this module the function pe (for program extraction) takes an
IFP proof and converts it into an IFP’ proof, using transIFP function defined
in the Proof module. This new proof is fed into the main program extraction
function, pe’.

Firstly, the proof is reconstructed to check whether it is possible to get its
end formula. If that is the case, the formula is checked based on Harrop/non-
Harrop criterion. For Harrop formulas, program extraction returns Nil. In case
the end formula is non-Harrop, further distinction is made based on the proof.
For instance, if it is a proof by assumption, then ProgVar with the label used in
the proof is returned. In case of a proof by conjunction introduction, the end
formulas of both sub-formulas of this conjunction are computed. If one of the
sub-formulas is Harrop, the the other sub-formula is then in a recursive call to
pe’. The program obtained from this call is then returned. If none of the sub-
formulas is Harrop, then for each them there is a recursive call to pe’ and a pair
of the programs obtained in this way is returned.
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12.4. Execution component

For most of the proofs, procedures within pe’ are fairly straightforward. The
most interesting cases are proofs by induction and coinduction. In case induc-
tion, the form of the predicate provided as a part of the proof is checked. It is
expected to be of a form µ(Φ). If it is not, the program extraction fails. Other-
wise, depending on whether Φ is Harrop or not, there are different scenarios.

If it is Harrop, then in all versions of induction, we have the same realizer,
namely s(m a) as seen in the soundness proof in chapter 10. Here s is a realizer
of Φ(P) ⊆ P or corresponding formula in the other versions of induction, a is a
realizer of µ(Φ)⊆ P and m is a realizer of the monotonicity proof.

If the operator is non-Harrop, there are different programs extracted for each
type of induction. In case of IND’, we get s◦ (m f ), for HSI’ we get s◦ 〈(m f ), id〉,
and for SI’ we get s◦ (m 〈 f ′, id〉) as per the soundness theorem and fig. 10.2.

In case of proofs by coinduction, firstly the end formula of the proof of
P ⊆ Φ(P) is calculated, normalized with respect to the declarations in the proof
environment, and stripped off the quantifiers. This resulting formula is expected
to be an implication. The premise of this implication (corresponding to P) is
then checked based on the Harrop/non-Harrop criterion.

If the formula is non-Harrop, then for COIND’ we get (m f ) ◦ s , for HSC’
we get [(m f )+ id] ◦ s , and for SC’ we get (m [ f ′+ id]) ◦ s as per the soundness
theorem.

If the formula is Harrop, then for COIND’ we get (m a) ◦ s , for HSC’ we get
[(m a)+ id]◦ s , and for SC’ we get (m [id+a])◦ s as per the soundness theorem.

12.4 Execution component

The execution mode works on the principle of evaluating a program one step at
a time. This is where the operational semantics comes into play. The users can
chose how the result of evaluation is displayed, that is in a step-by-step manner
or they can pick a specific number of steps to see the value at that point.

In order to provide a simple way of encoding numbers in the expected format,
a special function for converting integers into programs is defined:

numgen :: Int -> Program
numgen 0 = ProgCon Lt [ProgCon Nil []]
numgen n = ProgCon Rt [numgen (n-1)]

Similarly, we include a function for defining a list of integers as a program:

listgen :: [Int] -> Program
listgen [] = ProgCon Lt [ProgCon Nil []]
listgen (x:xs) = ProgCon Rt [ProgCon Pair [numgen x, listgen xs]]
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12.4. Execution component

These two functions are created specifically for running our case studies with
programs, which take numbers or lists of numbers as their input. This limited
set of data types is sufficient for our purposes. However, this approach is rather
rigid and requires users to add additional functions manually in order to work
with other data types. Ideally, a more flexible solution, which does not require
coding needs to be considered in the future.

The reader is welcome to watch a demo of PRAWF available at https://www.
youtube.com/watch?v=OY8dezi5054 as well as test the system on their own. The
source files are stored in the public repository [100].
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Chapter 13

Case studies

This chapter gives a walk-through from the stage when a proof is constructed
to the stage wh en an extracted program is executed. We present a couple of
simple programs in detail and outline a more complex example, a program for
exact real numbers representations, which was presented in [22].

Before starting any proof in PRAWF, first a proof environment needs to be
created. This means a language, a context, axioms, and declarations need to be
defined.

For the first of the case studies, we create a proof environment for working
with natural numbers defined in terms of real numbers. Real numbers are rep-
resented by the sort R. The language of reals includes constants 0,1 and 2 of the
sort R, as well as a number of functions and predicates:

<functions>
+ : (R,R) -> R;
- : (R,R) -> R;

* : (R,R) -> R;
abs : (R) -> R;
sin : (R) -> R
<end functions>

<predicates>
A : ();
B : ();
C : ();
= : (R,R);
< : (R,R);
<< : (R,R);

147



<= : (R,R)
<end predicates>

Predicates are defined as names followed by the corresponding arities. Here
arity is a list of sorts of elements, which are the arguments of a given predicate.

With respect to functions, notice that there is no difference between the func-
tions + : (R,R) -> R and * : (R,R) -> R apart from the function name.
The way the functions are defined in PRAWF makes them truly abstract in a sense
that there is no need to define what exactly addition, subtraction, or multiplica-
tion means. The only requirement is that these definitions state what is taken as
an input and what is returned. In this case, the functions + and * take two
real numbers as an input and output a real number. Similarly, the function for
the absolute value abs : (R) -> R requires a real number as an input and the
output is also a real number. Being abstract, all these functions rely on axioms,
which define what is the actual operation performed by a certain function.

Here are some axioms for working with real numbers. The variables x, y and
z are of sort R:

ax1 ∀x(∀y(((x+ y)−1) = (x+(y−1))))

ax2 ∀x(∀y((y = 0)→ ((x+ y = x))))

ax3 ∀z(∀y(∀x((y+ z)< x→ y < (x− z))))

ax4 ∀x(∀y(x = (x+ y)− y))

ax5 ∀x((x− x) = 0)

ax6 abs(0) = 0

ax7 0 < 1

ax8 ∀x((x∗0) = 0)

ax9 ∀x(((2∗ x)−1)−1 = 2∗ (x−1))

A more comprehensive list of axioms used in proofs is available in the source
code [100]. All the axioms that are added as a part of a proof environment need
to be Harrop.

To define what natural numbers are, we declare a predicate N as the least
fixed point of the operator Φ, where Φ = λY λ z (z = 0∨Y (z−1)).

Case 1. Addition of natural numbers. To extract a program for addition, we
formalize the goal as

∀x(N(x)→∀y(N(y)→ N(x+ y)))

148



and prove it in PRAWF by induction.
We begin with applying ∀+ and adding N(x) to the list of assumptions. By

IND, it suffices to show ∀y(y = 0∨N(x+(y− 1))→ N(x+ y)). Again, we use ∀+
and add y = 0∨N(x+(y− 1) to the assumptions. We need to prove 2 sub-goals
(a) y = 0→ N(x+ y) and (b) (N(x+(y−1))→ N(x+ y)).

For (a) the proof is straightforward since y = 0, so N(x+ y) = N(x), which is
justified by the ax2.

For (b) the goal can be rewritten as N((x+ y)−1)→ N(x+ y), using the con-
gruence rule. Again, this is possible due to ax1. We add the premise of this
implication to the list of assumptions and apply →−, followed by ∀− to get two
new sub-goals: (c) ∀z(z = 0∨N(z− 1)→ N(z)), where z corresponds to (x+ y),
and (d) (x+ y = 0∨N((x+ y)− 1)). The closure rule proves (c); (d) is proven
from assumptions by applying the ∨+r rule. This concludes the proof.

Constructing a proof in PRAWF means building up a proof tree, which cor-
responds to the proof steps like the ones described above. Once the proof is
completed, the proof tree is printed out in PRAWF. This structure is then used to
extract a corresponding program:

Abstpr v1

Recpr

Abstpr f_mu

Abstpr a_comp

Apppr

Abstpr v2

Casepr

ProgVar v2

*{Lt ["a_ore"]

ProgVar v1

} *{Rt ["b_ore"]

Apppr

Abstpr v4

Apppr

Abstpr a_id

ProgVar a_id

Conpr Rt

ProgVar v4

ProgVar b_ore

}

Apppr

Apppr

Abstpr xsuby

Abstpr monPv
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Casepr

ProgVar monPv

*{Lt ["a_ore"]

Conpr Lt

Conpr Nil

} *{Rt ["b_ore"]

Apppr

Abstpr v2

Conpr Rt

Apppr

ProgVar xsuby

ProgVar v2

ProgVar b_ore

}

ProgVar f_mu

ProgVar a_comp

This extracted program follows the proof steps from the proof tree and even
though the non-computational content is filtered out, it still contains a lot of ab-
stractions and applications. Therefore, there is a need to normalize this program
by means of beta reduction. The application of the normalization procedure
generates the following simplified program:

Abstpr v1
Recpr

Abstpr f_mu
Abstpr a_comp

Casepr
ProgVar a_comp

*{Lt ["a_ore"]
ProgVar v1

} *{Rt ["b_ore"]
Conpr Rt

Apppr
ProgVar f_mu
ProgVar b_ore

}

Here Abstpr is a label for abstraction, Recpr for recursion, Casepr for a case
constructor, Apppr for application and Conpr is a label for a program constructor.
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Both programs, the full and the simplified one, are equivalent in terms of
the output that they generate. In this example, the time difference in execution
of the full program and the simplified program is not noticeable. However, for
more complex proofs and programs that are extracted from them this may not
be the case. Normally, full programs need to perform a lot of extra calculations,
which is avoided in case of the simplified programs.

To execute the extracted program, we first need to encode the numbers that
we are going to add into their program form. We use the numgen function, with
the assumption that the input given is either 0 or a positive integer, for example:

*Mode> zero = numgen 0

*Mode> two = numgen 2

*Mode> three = numgen 3

Here zero corresponds to the program Lt(Nil), two to the program Rt(Rt(Lt(Nil)))
and three to the program Rt(Rt(Rt(Lt(Nil)))).

One way to calculate the result of executing the extracted program is by
evaluating it step by step. Evaluation in this case begins with an undefined value
⊥. The program is called recursively until the final expected result is shown. For
instance, if we run the program with the inputs 3 and 2, we expect to get the
number 5, i.e., Rt(Rt(Rt(Rt(Rt(Lt(Nil)))))). Here is how the program execution
looks like in PRAWF. Repetitive steps are omitted for convenience.

*Mode> applyme "additionsp" [three,two]
Type s to run the program step by step OR
enter a number to execute the program
for a certain number of steps >> s

1 bot
..
19 Rt(bot)
..
30 Rt(Rt(bot))
31 Rt(Rt(Rt(bot)))
32 Rt(Rt(Rt(Rt(bot))))
33 Rt(Rt(Rt(Rt(Rt(bot)))))
34 Rt(Rt(Rt(Rt(Rt(Lt(bot))))))
35 Rt(Rt(Rt(Rt(Rt(Lt(Nil))))))

In this case the result is calculated in 35 steps. If one is to proceed with the
evaluation after this, the value will remain unchanged as there are no more
undefined ⊥ elements left to evaluate.
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If one does not want to evaluate step by step, PRAWF also allows checking the
result of evaluation after a specified number of steps, for instance:

*Mode> applyme "additionsp" [three,two]
Type s to run the program step by step OR
enter a number to execute the program
for a certain number of steps >> 36
36 Rt(Rt(Rt(Rt(Rt(Lt(Nil))))))

Case 2. Program for reversing lists. The goal of the second case study is
to extract a program, which reverses a list of objects, regardless of their data
type. This is an example of a polymorphic program that goes beyond the area of
computable analysis.

Firstly, the proof environment needs to be redefined. The language now con-
tains:

• sorts t for a list, and s a single element in a list.

• a constant e for an empty list

• functions f : (s, t)→ t and g : t→ t

• predicates A of arity (t, t, t) and = of arity (t, t)

Here the predicate A(x,y,z) stands for reverse (x) ++ y = z. In other words,
concatenation of the reverse of the first list x with the second list y results in the
list z. Normally, A can be defined inductively as below, where Y has arity (t, t, t),
a is of the sort s, and x′ is of the sort t.

A = µλY λ (x,y,z)(x = e∧ y = z)∨∃a,x′(x = f (a,x′)∧A(x′, f (a,y),z))

We do not use this definition as it would create additional computational
content, which is not needed in practice.

We define a predicate L for a list as the least fixed point of the operator Φ,
where Φ = λY λx(x = e∨ (∃a(∃b(X(a)∧ (x = f (a,b))∧Y (b))))). Here X and a are
of sort s, while Y and x′ are of sort t. We also define a predicate R = λx, t A(x,e,z),
so R(x,z) = A(x,e,z).

List reversal can be expressed by the following formula:

∀x(L(x)→∃z(L(z)∧R(x,z)))

In PRAWF we prove this more generally, using the following claim, where y is
defined as an empty list. This helps us to obtain a faster linear program.

∀x(L(x)→∀y(L(y)→∃z(L(z)∧A(x,y,z))))
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Prior to starting the proof, we also add the following axioms to the proof envi-
ronment.

ax1’ ∀x(A(e,x,x))

ax2’ ∀a(∀x(∀y(∀z(A(x, f (a,y),z)→ A( f (a,x),y,z))))), where a is of sort s and x,y,z
are of sort t

The proof is by induction. After applying the IND rule, unfolding the operator
Φ and using ∀+ and →+ to add x = e∨ (∃a(∃b(X(a)∧ (x = f (a,b)∧ (∀y(L(y)→
(∃z(L(z)∧A(b,y,z))))))))) to assumptions, it suffices to show:

∀y(L(y)→∃z(L(z)∧A(x,y,z))))

We use ∨− rule with the newly added disjunction assumption to get its left
(branch a) and the right (branch b) parts as separate assumptions.

For the branch a, we use ∀+ and →+ again to gain a new assumption L(y).
The new goal is ∃z(L(z)∧A(x,y,z)). This goal is broken into two sub-goals by
applying ∃+ and ∧+. The first sub-goal is L(z). It corresponds to the assumption.
The second sub-goal is A(x,y,z). It is proven by rewriting it into A(e,y,y), which
holds by ax1’.

For the branch b, multiple application of the ∃− rule in combination with
of ∀+ and →+ allows striping off the existential quantifiers in assumptions and
arriving back at the initial goal of ∃z(L(z)∧A(x,y,z)). This time, however, there
are extra useful assumptions in the context, namely:

u: L(y)

v: X(a)∧ (x = f (a,b)∧ (∀y(L(y)→ (∃z(L(z)∧A(b,y,z))))))

The ∃− rule is applied again with ∃z(L(z)∧A(b, f (a,y),z)). Now, there are two
new sub-goals ∃z(L(z)∧A(b, f (a,y),z)) in branch c and ∀z((L(z)∧A(b, f (a,y),z))→
(∃z(L(z)∧A(x,y,z)))) in branch d.

For the branch c, the→− rule is used with L( f (a,y)), followed by ∀− and ∧−r ,
which makes the goal formula match the assumption v. To close off this branch,
several minor sub-goals generated by the application of above rules need to be
proven. For instance, →− is used with Φ(L)( f (a,y)) and ∀− to transform the
sub-goal L( f (a,y)) into the form of a closure, i.e. ∀x(Φ(L)(x)→ L(x)). Further
smaller sub-goals are also proven using several transformation steps that make
them match with the assumptions u and v.

For the branch d, first the quantifier is stripped off and the assumption w :
L(z)∧A(b, f (a,y),z) is added to the context. The new goal is ∃z(L(z)∧A(x,y,z)).
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Again, the quantifier stripped off and the resulting conjunction is split into two
sub-goals.

For L(z), the ∧−l rule is used with A(b, f (a,y),z) and resulting formula is
proven by the assumption w.

For A(x,y,z), the goal is rewritten as A( f (a,b),y,z), using the congruence rule
and then by application of the→− rule with A(b, f (a,y),z), followed by quantifi-
cation, the new goal matches the ax2.

All the extra goals introduced by the implication elimination and congruence
transformed into a form which allows proving them from the available assump-
tions. These are small transformations; the exact order of steps is available in
the source code of PRAWF namely in the tactics file called revlist.txt.

When the proof is complete a corresponding program can be extracted. The
simplified version of the program for list reversal is given below.

Recpr
Abstpr f_mu

Abstpr a_comp
Casepr

ProgVar a_comp

*{Lt ["a_ore"]
Abstpr v3

ProgVar v3
} *{Rt ["b_ore"]

Abstpr v5
Casepr

ProgVar b_ore

*{Pair ["a_elr","b_elr"]
Apppr

Apppr
ProgVar f_mu
ProgVar b_elr

Conpr Rt
Conpr Pair

ProgVar a_elr
ProgVar v5

}
}

To test that the program executes correctly, we define a list that needs to be
reversed as a program. The type of the elements in the list can be arbitrary but
for simplicity we use a list of positive integers [1,3,5] as an example. We also
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define an empty list as a program, i.e. Lt(Nil). This is needed in order to perform
evaluation with respect to our definition of a list, i.e. it is either an empty list or
a pair (a,x), where a is a single element (the head of the list) and x is a list of an
arbitrary length (a tail).

This time the evaluation takes 64 steps and we get the equivalent of [5,3,1]
printed out in the program format. We deliberately skip steps in the below to be
concise.

*Mode> empty = listgen []

*Mode> l = listgen [1,3,5]

*Mode> applyme "revlistsp" [l,empty]
Type s to run the program step by step OR
enter a number to execute the program for a certain number of steps
>> s

1 bot
..
53 Rt(bot)
54 Rt(Pair(bot, bot))
..
64 Rt(Pair(Rt(Rt(Rt(Rt(Rt(Lt(Nil)))))),

Rt(Pair(Rt(Rt(Rt(Lt(Nil)))),
Rt(Pair(Rt(Lt(Nil)), Lt(Nil)))))))

Since we are using type-free language, it is important to understand what
Lt(Nil) means in each of the cases to understand the output of this example.
The first three occurrences of Lt(Nil) stand for 0, which is a base for building
numbers like 5, 3 and 1. The last occurrence of Lt(Nil) refers to an empty list.
In a simpler representation, Haskell-like notation, the above stands for 5:3:1:[].

Case 3. Conversion of natural numbers into Cauchy. While the first two ex-
amples use only induction, in order to extract a program to convert natural
numbers into their Cauchy representation, the proof requires the use of both,
induction and coinduction. The statement that needs to be proven is as follows.

∀x(N(x)→C(x))

The proof environment is an extended version of the proof environment in the
first case study. The predicate N for natural numbers is defined as before and
C (for Cauchy) is the greatest fixed point of ΦC = λXλx ∃y(N(y)∧ abs(x− y) <
1∧X(2∗ x)).
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Applying the coinduction rule and unfolding the operator the new goal to
prove is ∀x(N(x)→ (∃y (N(y)∧(abs(x−y)< 1∧N(2∗x))))). After applying the ∀+
rule we add u1 : N(x) to the list of assumptions. Using the ∃+ with x and ∧+, we
get three new sub-goals (a), (b) and (c).

(a) N(x), which is proven from the assumption u1.

(b) abs(x− x) < 1 is proven by rewriting this goal to 0 < 1, which corresponds
to the axiom ax7. This rewriting requires the use of the congruence rule
and the axioms ax5 and ax6.

(c) N(2∗ x) is transformed into ∀x(N(x)→ N(2∗ x)) , using the→− and ∀−.

Now we need to prove ∀x(N(x)→ N(2∗ x)). The proof is by induction. Since
N is defined in terms of Φ, the definition of Φ is unfolded, creating a new goal,
i.e. ∀x((x = 0∨N(2∗ (x−1)))→ N(2∗ x)). Using the combination of ∀+ and→+,
we add a new assumption u2 : x′ = 0∨N(2 ∗ (x′− 1)) to context. Then the ∨−
rule is applied with this newly added assumption, creating two new sub-goals
(d) and (e).

(d) x′ = 0→ N(2 ∗ x′). Here the →+ rule is used to add u3 : x′ = 0 to the con-
text. The new goal N(2∗ x′) is rewritten by the congruence rule into N(0).
Using →− and ∀−, we rewrite the goal to ∀x(Φ(N)(x)→ N(x)), which is
a closure. Again, a number of trivial sub-proofs need to be performed to
justify the use of the congruence rule. These sub-proofs are written out in
detail in cauchy.txt, which is one of the tactics supplied with the PRAWF

distribution.

(e) N(2 ∗ (x′− 1))→ N(2 ∗ x′). This goal is rewritten by congruence rule into
N((2 ∗ x′− 1)− 1)→ N(2 ∗ x′). The premise of this implication becomes a
new assumption u4. Using→− with ∀x(N(x−1)→ N(x)), followed by→+,
we add a new assumption u5 : ∀x(N(x−1)→ N(x)) to the context. N(2∗ x′)
is then used with u5 to transforms this goal exactly into the form, which
matches the assumption u4.

Adding ∀x(N(x−1)→ N(x)) as a part of the→− rule requires justification.
Using ∀+, ∀x(N(x− 1)→ N(x)) is transformed to N(x′′− 1)→ N(x′′). The
premise of this implication is added as a new assumption u6. Again, →−
is used with x′′ = 0∨N(x′′− 1), followed by ∀−, transforming the current
goal to ∀x′′((x′′= 0∨N(x′′−1))→N(x′′)), which is a closure. The remaining
sub-proofs created by the use of congruence are proven by the assumptions
from the context and the axiom ax9.
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This concludes the proof. The extraction generates the following recursive
program:

Recpr
Abstpr f_nu

Abstpr a_comp
Conpr Pair

ProgVar a_comp
Apppr

ProgVar f_nu
Apppr

Recpr
Abstpr f_mu

Abstpr a_comp
Casepr

ProgVar a_comp

*{Lt ["a_ore"]
Conpr Lt

Conpr Nil
} *{Rt ["b_ore"]

Conpr Rt
Conpr Rt

Apppr
ProgVar f_mu
ProgVar b_ore

}
ProgVar a_comp

The below is a brief illustration of the evaluation process, which generates a
stream representing the real number 2. This representation shows a stream after
100 evaluation steps. Since here we work with infinite Cauchy sequences, in
order to present them we print finite results after a certain number of evaluation
steps. This, however, requires the use of bot for undefined parts, which can be
evaluated further if we decide to continue evaluation beyond the chosen number
of steps.

*Mode> applyme "cauchysp" [two]

Type s to run the program step by step OR

enter a number to execute the program for a certain number of steps >> s

1 bot

..
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5 Pair(bot, bot)

..

7 Pair(Rt(bot), bot)

8 Pair(Rt(Rt(bot)), bot)

9 Pair(Rt(Rt(Lt(bot))), bot)

10 Pair(Rt(Rt(Lt(Nil))), bot)

..

20 Pair(Rt(Rt(Lt(Nil))), Pair(bot, Pair(bot, bot)))

..

30 Pair(Rt(Rt(Lt(Nil))),

Pair(Rt(Rt(bot)),

Pair(bot, Pair(bot,

Pair(bot, bot)))))

..

50 Pair(Rt(Rt(Lt(Nil))),

Pair(Rt(Rt(Rt(Rt(Lt(Nil))))),

Pair(Rt(Rt(Rt(Rt(bot)))),

Pair(Rt(Rt(bot)),

Pair(bot, Pair(bot, Pair(bot,

Pair(bot, bot))))))))

..

100 Pair(Rt(Rt(Lt(Nil))),

Pair(Rt(Rt(Rt(Rt(Lt(Nil))))),

Pair(Rt(Rt(Rt(Rt(Rt(Rt(Rt(Rt(Lt(Nil))))))))),

Pair(Rt(Rt(Rt(Rt(Rt(Rt(Rt(Rt(bot)))))))),

Pair(Rt(Rt(Rt(Rt(Rt(Rt(bot)))))),

Pair(Rt(Rt(Rt(Rt(bot)))),

Pair(Rt(Rt(bot)),

Pair(bot, Pair(bot, Pair(bot, Pair(bot, Pair(bot, Pair(bot,

Pair(bot, Pair(bot,

Pair(bot, bot))))))))))))))))

..

In a more concise form, this can be written as nested pairs (2,(4,(8, ..))). Fur-
ther evaluation follows the expected pattern with 16 being the next number to
be evaluated.

Summary and more complex case studies. Working on these examples has
shown that the proof process in PRAWF can be tedious. A number of usability
improvements were introduced to speed up the interaction, however, there is still
a lot that can be improved in terms of practical usability. These improvements
are mentioned in the final part of this thesis.
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Whilst the case studies described earlier show that the program extraction
approach we developed is working, they are rather small. A more complex case
study was performed by Hideki Tsuiki, whose main goal was to show that real
number represented as a signed digit can be translated into its Gray code rep-
resentation. The corresponding theorem was proven manually in [24]. This
proof was subsequently replicated in PRAWF in the environment, which was an
extended version of the language of reals that we used in the previous cases.

Both ways of representing real numbers are expressed in a form of infinite
streams. Logically, they rely on coinductively defined predicates. For instance,
for the predicates S and G a realizer of S(x) is an infinite stream of signed digits
representing x and, similarly, a realizer of G(x) represents x in Gray code.

The predicate S is defined as the largest fixed point of ΦS, where ΦS
Def
=

λXλx ∃d(SD(d)∧ (abs(2 ∗ x− d) ≤ 1)∧X(2 ∗ x− d)), and the predicate SD (for
signed digit) is defined as λx((x = m∨ x = 1)∨ x = 0). The infinite stream, which
is the realizer of S(x), consists of digits like Lt(Lt(Nil)) for −1, Lt(Rt(Nil))) for
1 and Rt(Nil) for 0. Each of these digits are actually realizers of SD(y) for the
corresponding signed digit y. Streams are presented in the form of infinitely
nested pairs, for instance the real number−0.5 is written as Lt(Lt(Nil)) : Rt(Nil) :
Rt(Nil) : . . ., that is −1 : 0 : 0 : . . ., where a : b stands for Pair(a,b).

Gray code representation is special in a sense that a realizer of G(x) is a
stream that may have one element not defined. The predicate G is the greatest
fixed point of ΦG, defined as λXλx (m≤ x∧ x ≤ 1)∧ (D(x)∧X(t(x))). Here t is a
tent function, which when applied to x is defined as 1−2∗abs(x). The predicate
D is defined as λx (¬(x = 0))→ B(x), where B = λx (x≤ 0∨0≤ x). The way that
D is defined allows us to admit a program as a realizer, even if its value is not
defined like in case of an infinitely looping program. This is possible when the
premise in D is false, that is when x = 0.

In order to extract a program for converting of a signed digit stream into a
Gray code stream in PRAWF the statement ∀x(S(x)→ G(x)) needs to be proven.
This proof is complex and involves a multitude of sub-proofs. The tactic for this
proof is called gray-stog and should be run with the gray environment. This
proof is included with PRAWF distribution. The most interesting points of the
proof are highlighted in [22]. Should the reader be interested, the distribution
also contains a few more tactics, which can be used to extract some simpler
programs.
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Conclusions
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The journey

The journey that brought me to this point was not a straightforward one. In
my first year I focused on natural language processing instead of program ex-
traction. I was aiming to find a way of parsing proofs written in (a subset of)
natural language efficiently in order to convert them into formal proofs in a proof
assistant.

Natural language processing is not a new topic, however, this specific as-
pect of using it with mathematical proofs does not have a lot of related research
apart from the Naproche project [41]. This project looks at a subset of natural
language, Naproche CNL (controlled natural language), which is used for check-
ing existing mathematical texts. My pursuit, on the other hand, was directed
towards applications of natural language processing whilst mathematical con-
tent is being created. Consequently, a prototype system Script was developed.
This system used a language that, although being formal, looked very close to
natural language. Script used the basic PRAWF machinery to check the proofs
and automatically deduce solutions. The idea was to use it on its own or when
writing papers. For instance, if one were to write a proof using LATEX , then Script
would “read” this proof and check it for correctness. I presented the prototype
at the Proof, Computation, Complexity 2017 workshop.

In my second year, after the realization that the scope of my original research
was too large and with the growing interest in program extraction, the direc-
tion of my research changed. This shift led to transformation of the previously
developed proof assistant that I used before into a prototype tool for program
extraction, which is now known as PRAWF.

PRAWF is a testing ground for various ideas and a good base for building
numerous extensions. For instance, while this thesis is being written, my fel-
low research student is extending PRAWF to work with sequent calculus. PRAWF

allows us to present IFP in action. Compared with the well-established proof
assistants like Coq, Isabel or Minlog, our tool does not have enough strength in
terms of the number of already proven theorems, usability, and certain addi-
tional functionalities. However, it is not meant to compete with them but rather
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be a simple way of presenting how IFP can be implemented without getting
distracted by the specifics of the established systems, which are not straightfor-
wardly compatible with IFP. In fact, at a certain point I attempted to implement
IFP in Coq. However, I encountered complications due to bound variables re-
naming. Hence, the decision was made to continue working on PRAWF instead
to achieve more functionalities within the limited time. Implementation of IFP
in Coq is worth revisiting in the future, provided there is sufficient time to tackle
these complications.

Summary

This thesis developed a new approach to program extraction from proofs, which
uses inductive and coinductive definitions. After reviewing the existing ap-
proaches of obtaining correct programs, with a specific focus on intuitionism
and realizability interpretation, we set a semantic foundation for our approach
and performed a rigorous proof of correctness.

The key system, IFP, served as a base of this research, allowing construction
of proofs about abstract mathematical objects. An enhanced realizability inter-
pretation based on Kleene’s original research was used to enable extraction of
computational content from these proofs. The distinction between Harrop and
non-Harrop formulas allowed separating computationally meaningful constructs
in a proof from the computationally irrelevant content. This thesis also gave an
overview of the existing developments in the area of program extraction. IFP
and PRAWF were specifically inspired by the Minlog system. The main difference
is in the way induction and coinduction are defined in both systems as well as
slightly different treatment of Harrop formulas. While in Minlog they are es-
sentially treated as nc formulas, in our system there is distinction between nc
formulas and Harrop formulas as their subset.

This thesis includes the following main contributions:

1. a detailed proof of soundness,

2. an alternative approach to operational semantics, which uses extended clo-
sures to avoid unnecessary substitution, and

3. development of a proof assistant for program extraction based on IFP.

The first part covered the theoretical framework and background related to pro-
gram extraction.

The second part presented IFP, IFP’ and RIFP, as well as the proof of sound-
ness. The Soundness Theorem originally proven in [21] showed a direct link
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between IFP and RIFP. However, this version of the Soundness Theorem was not
included here as it is a restricted version, which requires predicates to be admis-
sible. Instead, a detailed proof of the redefined theorem, drafted in [24], was
included. This version of the Soundness Theorem links IFP’ with RIFP. However,
since IFP proofs can be “translated” into IFP’ proofs, this theorem also shows that
IFP is sound. The thesis also included a brief presentation of the denotational
semantics and a larger overview of operational semantics, showing the adequacy
between them. The Adequacy Theorem presented in this thesis is a variant of the
Adequacy Theorem proven in [24], adjusted to match the updated operational
semantics in order to show that even after the update the adequacy remained.

The third part of the thesis included a general description of the structure
of PRAWF. Here several case studies were presented to showcase program ex-
traction from IFP proofs in PRAWF. The reader is welcome to try this tool for
themselves. The relevant software is available on Bitbucket [100]. The user
manual and the tutorial are available at the official PRAWF website [101]. The
tutorial follows the first one of the case studies.

PRAWF is a prototype system and requires improvements in order to become
as powerful as the well-established proof assistants. Although we did not inves-
tigate how the efficiency of the programs extracted in PRAWF compares to that
of the programs extracted in other tools, we did show that IFP works in practice,
which was the main purpose of such an implementation. Successful program
extraction leads us believe that it is viable to implement IFP in a more powerful
proof assistant.

Future work

There are various aspects, both theoretical and practical, that can be used to ex-
tend and improve this research.

From the theoretical perspective, providing formal proofs of the Soundness
and the Adequacy Theorems within one of the established systems will help to
improve trust in IFP. Apart from that, since all axioms and rules of IFP (and
RIFP) are true w.r.t. the classical notion of model, IFP does not contradict classi-
cal mathematics.

From the practical point of view, the use of Skolem functions for adding ax-
ioms should be considered. Skolem functions provide a systematic and con-
trolled way of introducing new functions with prescribed (non-computational)
properties. The Skolem scheme guarantees that such a new function with the
prescribed property actually does exist in a classical model (for the existence
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one uses the Axiom of Choice though). Hence, the use of Skolem functions
could help us to ensure that the axioms added to PRAWF’s proof environment are
indeed meeting the requirement of being non-computational.

Another task would be updating the implementation to include a proof of
correctness with each extracted program. This is done in other systems, e.g.
Minlog, and the implementation should not be too complicated. This means that
the proof of the Soundness Theorem needs to be implemented.

To make our system more applicable and scalable, the theorem database
needs to be extended. This may include introduction of the notion of a Theory,
which would include a set of theorems combined with the appropriate language,
declarations and axioms.

As mentioned earlier, the signed digit representation into infinite Gray code
conversion was one of the more complex case studies. However, it is only the half
of a potentially bigger case study, exploring the reverse conversion from infinite
Gray code conversion into the signed digit representation. This direction is more
complicated and requires further extension of IFP and additional research into
concurrency.

Another challenging area is linear algebra with exact real numbers, in partic-
ular matrix inversion. Usually matrix inversion is done using Gaussian elimina-
tion, which picks out a column in the matrix, which is not zero. This is a pivot
problem because one cannot test if a real number is zero or not. For instance,
if we need to solve two linear equations ax+by = c and dx+ ey = f . Naively we
could try to solve the first equation for x, i.e., x = (c− by)/a. However, such an
approach can only work if a is not zero. Therefore, one needs to find one of the
coefficients, which is not zero. However, it is not possible to decide which one is
definitively not a zero. For instance, in case the coefficients are given as Cauchy
sequences, converging to very small values, such that it is hard to see if they are
zero or not. Therefore, all coefficients need to be worked on in parallel until one
is found to be non-zero. This requires non-determinism, which makes program
extraction non-trivial.

Extraction of a SAT solver was previously done in Minlog in [20]. The way
induction and coinduction are defined in Minlog required certain workarounds
to make extraction efficient. Therefore, it is an interesting case to explore within
IFP to see whether the extraction process can be more straightforward.

Additionally, from the usability perspective, the interface of the system needs
to be improved to be more accessible. The issue that we encountered so far is
that when GHCi updates certain minor functionalities, which are not directly
related to IFP, PRAWF may stop working. Consequently, the system needs to be
monitored to ensure that the users of the newer versions of GHCi can work with
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the system. Another aspect is the need to add more flexibility in the execution
mode. This may include introduction of an alternative way to add new data
types seamlessly, without modifying the source code.

To sum up, PRAWF is a fairly new system. Hence, during its development
we focused mainly on the core functionalities. This system is aimed to be an
advocate for IFP in terms of bringing the theory behind IFP into the practical
realm.
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