Journal article 776 views 237 downloads
On the detailed design of a quasi-zero stiffness device to assist in the realisation of a translational Lanchester damper
Mechanical Systems and Signal Processing, Volume: 164, Start page: 108258
Swansea University Author: Alexander Shaw
-
PDF | Accepted Manuscript
©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)
Download (1.38MB)
DOI (Published version): 10.1016/j.ymssp.2021.108258
Abstract
A translational Lanchester damper is a device that adds damping to a structure at a point using a series combination of a viscous damper and a mass. The problem in the practical realisation of such a device is that a stiffness is required to support the mass, which changes the dynamic behaviour of t...
Published in: | Mechanical Systems and Signal Processing |
---|---|
ISSN: | 0888-3270 |
Published: |
Elsevier BV
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa57555 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
A translational Lanchester damper is a device that adds damping to a structure at a point using a series combination of a viscous damper and a mass. The problem in the practical realisation of such a device is that a stiffness is required to support the mass, which changes the dynamic behaviour of the device, introducing a resonance frequency due to the interaction of the stiffness and inertia forces. This is a dynamic vibration absorber. To achieve a device that behaves broadly as a Lanchester damper rather than a dynamic vibration absorber, a very low stiffness is required, and this is the focus of this paper. The low stiffness is realised using a combination of linear springs and rigid links arranged with specific geometry into a compact device. Although the geometric configuration of the components leads to an inherently nonlinear device, the aim is to limit its working condition and exploit the linear-like behaviour. To this end, how the geometry affects the nonlinear behaviour is studied in detail, providing general guidelines for its design. A prototype Lanchester damper incorporating the low stiffness element was manufactured and tested on a single mode and two multi-modal vibrating structures. |
---|---|
Keywords: |
Vibration absorber, Vibration neutraliser, Vibration isolator, Nonlinear energy sink, Essentially nonlinear stiffness, High-static-low-dynamic-stiffness, Passive vibration control |
College: |
Faculty of Science and Engineering |
Start Page: |
108258 |