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Abstract 

A translational Lanchester damper is a device that adds damping to a structure at a point using a series 

combination of a viscous damper and a mass. The problem in the practical realisation of such a device is that a 

stiffness is required to support the mass, which changes the dynamic behaviour of the device, introducing a 

resonance frequency due to the interaction of the stiffness and inertia forces. This is a dynamic vibration 

absorber. To achieve a device that behaves broadly as a Lanchester damper rather than a dynamic vibration 

absorber, a very low stiffness is required, and this is the focus of this paper. The low stiffness is realised using a 

combination of linear springs and rigid links arranged with specific geometry into a compact device. Although 

the geometric configuration of the components leads to an inherently nonlinear device, the aim is to limit its 

working condition and exploit the linear-like behaviour. To this end, how the geometry affects the nonlinear 

behaviour is studied in detail, providing general guidelines for its design. A prototype Lanchester damper 

incorporating the low stiffness element was manufactured and tested on a single mode and two multi-modal 

vibrating structures.  

   

Keywords: vibration absorber; vibration neutraliser; nonlinear energy sink; essentially nonlinear stiffness; high-

static-low-dynamic-stiffness; passive vibration control. 

  



1 Introduction  

More than a century ago, Lanchester invented a torsional vibration damper for the crankshaft of an internal 

combustion engine [1]. This device, which involves a viscous damper and a rotating inertial mass, proved to be 

very effective [2] and is still in use today. It is called the Lanchester damper and has the advantage that it is 

effective over a wide range of frequencies, as it does not have a stiffness element, and is hence not tuned to a 

specific frequency. This, of course, is possible with a rotational device, and for a rolling device in the horizontal 

direction [3], but is impractical for a system that undergoes vertical translational motion because a spring is 

necessary to support the inertial mass. The addition of a spring completely changes the dynamic behaviour of 

the device, introducing a resonance due to the interaction of the stiffness and inertia forces. Ormondroyd and 

Den Hartog described this in detail in 1928 [4] and called the device a dynamic vibration absorber. Since then, 

there have been numerous articles on the dynamic vibration absorber, and it has been acknowledged as an 

effective vibration control measure used in a broad range of engineering applications encompassing civil, 

transport and aeronautical areas, for example [5,6]. It is sometimes called a tuned vibration absorber or a tuned 

mass damper, amongst others. The fundamental aim of this device, comprising mass, stiffness and damping is to 

add damping to a host structure, generally at a troublesome resonance frequency. If the objective is to suppress 

the forced harmonic response of the host structure, the dynamic vibration absorber is called a tuned vibration 

neutraliser, because the aim is vibration suppression at a single frequency, rather than the addition of damping. 

In the past decade, there has been significant interest in improving the performance of the dynamic vibration 

absorber by introducing nonlinear stiffness, for example [7-9]. Design and optimization strategies have been 

investigated [10,11], and experimental approaches have been proposed for parameters identification [12]. In 

practice, springs cannot be extended/compressed to infinity, which involves nonlinear saturation stiffness issues 

[13,14]. Recent works on the use of nonlinear vibration absorbers include Godoy and Trindade [15], who 

investigated the tuning of a nonlinear dynamic vibration absorber based on a snap-through truss geometry, and 

Zou et al. [16], who proposed a geometrical device capable of customizing the nonlinear forces used for 

vibration isolation and energy sink devices.  

If a dynamic vibration absorber has nonlinear stiffness, but a negligible linear stiffness (sometimes called an 

essentially nonlinear stiffness), then tuning in the classical way is not possible. Such a device is commonly 

referred to as a nonlinear energy sink, and has been studied by several researchers. It can broaden the frequency 

range at which it is effective [17-21], acting in a similar way to the Lanchester damper. However, suppose the 

nonlinear energy sink is subject to large amplitude vibrations, then effects due to the nonlinearity can appear 

[22-25], such as the existence of quasi-periodic motion, nonlinear amplitude jumps, and isolated detached 

branches of the frequency response curves. Many different configurations have been explored [26-29], and 

optimization strategies have been proposed [30,31]. 



This paper concerns the design of a device that behaves as a translational Lanchester damper over a broad range 

of frequencies, in a similar way to the nonlinear energy sink discussed above. A quasi-zero stiffness nonlinear 

spring [32] is designed to achieve this. It has a high-static and low-dynamic stiffness, similar to that exploited 

for vibration isolation problems [33,34]. The novelty lies in the design of the device, which exploits the 

combination of an articulated linkage and a pair of linear helical springs in tension, to achieve a quasi-zero 

stiffness effect. The work focuses on the design and implementation of a device operating in its linear regime 

rather than its optimisation, which has been covered in [35,36]. It builds on a previous article by the authors of 

this paper [37], in which an adjustable high-static and low-dynamic stiffness device was used to suspend masses 

on a multi-modal structure for ground vibration tests in the aerospace sector.  

The paper is organised as follows. Following this introduction, Section 2 outlines the physical problem of 

adding damping to a host structure using a damping element and an inertial mass. Section 3 describes the 

proposed configuration of the translational Lanchester damper with quasi-zero stiffness, from the kinematic and 

quasi-static point of view, emphasising the limits for linear-like behaviour. A dynamic analysis of the device is 

carried out in Section 4, which highlights the fundamental theoretical performance and presents numerical 

validation by simulations. Section 5 describes the experimental work, which illustrates the behaviour of a 

prototype device attached first to a single degree-of-freedom system, and then on two different multi-modal 

engineering structures. The paper is then closed with some conclusions in Section 6. 

2 Problem statement 

There are many situations where it is necessary to add damping to a structure to reduce vibration at troublesome 

resonance frequencies. Sometimes this is done using unconstrained or constrained layer damping, where 

damping material is applied in a distributed manner to the structure [38,39]. In some cases, however, this is not 

possible, and damping is applied at a point. This is illustrated in Figure 1(a), where the host structure is 

represented as a dynamic stiffness K, and for convenience, the damping mechanism is assumed to be a viscous 

damper with damping coefficient c. In this figure, the damper has one end attached to ground, but this is not 

possible in many cases, so the ground is replaced by a mass as shown in Figure 1(b).  

 

 

 

 

 

 

 

 



 

 

 

Figure 1. Schematic of a structure with dynamic stiffness K with (a) a damper connected to ground, and (b) a damper connected to a 

mass. 

 

This changes the dynamic behaviour of the system significantly and can be investigated by noting that the 

dynamic stiffness of the complete system is given by 

1

d

X

F K K
=

+
      (1) 

 

where F is the amplitude of the excitation force, X is the amplitude of the resulting displacement and 
dK  is the 

dynamic stiffness of the combination of the attached damper and mass. All the quantities are frequency domain 

variables. The dynamic stiffness of the attachment is seen to affect the response of the complete system. As 

mentioned above, the design requirement is that the attachment behaves as a damper, but this only occurs above 

a certain frequency. To determine this frequency, the dynamic stiffness of the attachment, which is a series 

combination of the damper and the mass, is studied. It is given by 
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 This can be rearranged to give 
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where 
dZ  is the impedance of the attachment. The modulus of this impedance is plotted in Figure 2, where its 

frequency dependence can be clearly seen.  



 

Figure 2. Mechanical impedance of a series combination of a viscous damper and a mass. 

 

The low frequency behaviour, when 
t   in which 

t c m = is the transition frequency, is given by the thick 

dashed line, which is 
t

dZ m
 




= . At high frequencies when 
t   then 

t
dZ c

 
= , which is given by 

the thin horizontal dashed line. It is thus clear that the ratio of c m  is the quantity to be adjusted to ensure that 

the attachment acts as a damper and not as a mass in the frequency range of interest.  

 

Although the problem of not having a convenient ground is solved by using a mass, as with the Lanchester 

damper, a further problem occurs in that a spring is required to be placed in parallel with the damper to support 

the mass (especially when working in the vertical direction, i.e., against gravity), resulting in potential further 

undesirable dynamic behaviour. The attachment now has a natural frequency of n k m = , where k is the 

spring stiffness, and this is required to be as low as possible so that the device broadly behaves as a Lanchester 

damper rather than a dynamic vibration absorber. To achieve this, and to maintain a low static displacement 

when the attachment is orientated in the vertical direction, a linear spring with high-stiffness (which supports 

the load with minimal deflection) is combined with a nonlinear negative stiffness element to realise the high-

static and low-dynamic stiffness characteristic [37]. In principle, a quasi-zero stiffness spring would be ideal for 

such purposes [40], whose force-displacement characteristic is shown in Figure 3, along with a schematic of the 

attachment.    

 

Figure 3. Design requirements for a damping attachment, in which c/m is much lower than the lowest natural frequency of the host 

structure. 



 

3 Mechanical implementation of the device: kinematic and quasi-static analysis 

The model of the proposed translational Lanchester damper with quasi-zero stiffness is illustrated in Figure 4, 

and it consists of a combination of a five-bar linkage with a pair of linear springs, in parallel with the viscous 

damper. In this device, the damping arises from the connections between the rigid links and the spring elements 

in the suspension device [37]. Although a complex nonlinear relation between the translational equivalent 

damper and its physical sources exists, the dynamic working conditions of the device are assumed to be such 

that both stiffness and damping are broadly linear about the static equilibrium position. 

 

Figure 4. Mechanical implementation of the Lanchester damper with quasi-zero stiffness suspension: (a) equilibrium configuration 

when subject to static load due to the device mass only, and (b) linkage configuration when subject to an additional external static 

excitation. 

 

Figure 4(a) shows the configuration of the device when subject only to the weight due to its mass, and Figure 

4(b) shows the configuration when a static external force is also considered. The two springs only work in 

tension during the operation of the device. In the equilibrium configuration illustrated in Figure 4(a), the 

horizontal spring does not contribute to the vertical load, so the mass is only supported by the vertical spring. In 

the deformed configuration illustrated in Figure 4(b), the horizontal spring helps to balance the vertical external 

static force through the linkage configuration.  

The five-bar linkage in Figure 4 has two degrees-of-freedom, but due to the symmetry of the system and the 

loading condition, the mechanism deforms mainly along the vertical direction [37]. A slight movement along 

the horizontal direction only manifests in the event of undesired asymmetric effects. The slider-crank 



mechanism illustrated in Figure 5 is thus considered an appropriate model of the stiffness components of the 

system in Figure 4. 

 

Figure 5. Slider-crank model of the device. 

 

The external static force in Figure 5 is balanced by two elastic components acting in parallel. Since the 

objective is to realise a quasi-zero stiffness behaviour, and one component is due to the positive stiffness of the 

vertical linear spring, the other component due to the horizontal spring through the linkage should have a 

negative stiffness. To achieve such characteristic, the horizontal spring must be assembled with a pre-set 

tension, so that its free length is less than the assembled length a.  

The aim of the following analysis is to better understand the nonlinear effects on the device behaviour, so that 

they can be avoided by a proper design strategy, and linear-like regime can be effectively exploited. 

 

3.1. Negative stiffness component 

Negative stiffness has been achieved using linear springs arranged in several geometric configurations, for 

example using the classical one pair of oblique springs [34], two pairs of oblique springs [41,42], or scissor-like 

structures [43]. In this paper, the negative stiffness is realised through a specific mechanical linkage and one 

linear spring only. Due to the linkage in the suspension system, it has some singular configurations [44], which 

are illustrated in Figure 6(a) and (b), and are determined from 



 

 2

, 2 2s sz b b ab+ − = − + 
      

(4a,b) 

 

where the subscript s stands for singular, + and – indicate the positive and negative sign of the displacement z. 

From Equations (4a,b), it is evident that when
 
b a , only one real singular configuration exists, as shown in 

Figure 6(a). Figure 6(b) shows both singular configurations of the linkage when b is greater than a. 

There are two additional critical configurations in the linkage of Figure 5, which are illustrated in Figure 6(c,d) 

and are related to the possible collisions among the links. In Figure 6(c) the link of length a collides with the 

base, while in Figure 6(d) the link of length a collides with its symmetric counterpart. From the geometry of the 

system, the condition in Figure 6(c) occurs when 
1 22 0.7b a a−   , and the condition in Figure 6(d) occurs 

when 
1 22 0.7b a a−  . In terms of the displacement z, these two conditions occur when 

 2bz b− = − , 
2 22 4lz b a b a− = − − + −

     
(5a,b) 

where the subscript b stands for base, and l stands for links. 

 



Figure 6. Geometric limits of the slider-crank linkage. Singular configurations in the case when (a) b a  and (b) b a ; 

configurations denoting internal collisions in the case when (c) 0.7b a  and (d) 0.7b a . 

 

The contribution to the vertical static force, as a function of the vertical displacement z is determined from the 

elastic potential energy of the horizontal spring to give 

 

 ( )4 P
h h Q

dx
f k a x a

dz
= − − −       (6) 

 

where xQ is the horizontal coordinate of point Q in Figure 5, and  is related to the free length of the horizontal 

spring a, which is assembled in tension so that the  < 1 With reference to Figure 5, 2Q Px x=  , where the 

point P is the intersection between a circle of radius 2b centred at point O, and a circle of radius a centred at 

point A. The displacement of point P is given by   
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Substituting for 
Px  into Equation (6) results in  
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Equation (8) is quite cumbersome to be of any direct use, however, it can be expanded into Taylor series to give 
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which is simple enough to examine the main characteristics: (i) it is not symmetric, but asymmetry only has an 

effect for relatively high values of displacement, since the lowest even term is of fourth-order; (ii) the 

asymmetry is reduced if  is increased; (iii) for small displacements, the linear stiffness does not depend on a 

and b, i.e. on the dimensions of the device; (iv) the dimension b is only important for relatively high 

displacements, since it first appears into the fourth-order term; (v) for relatively small values of displacement, 

the nonlinearity decreases with an increase in a, so that the longer the horizontal links, the smaller the nonlinear 

effect. 

For subsequent use, Equation (9) is limited to the third term only and is further normalised by introducing the 

non-dimensional displacement z z a= , the non-dimensional force h h hf f ak=  and the ratio b b a=  , to yield 
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2
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−
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which is similar to the expression of the classical three-spring quasi-zero stiffness configuration working in 

compression [34]. 

To investigate the validity of the approximation made in the derivation of Equation (10), this is plotted for 

different values of b , in Figure 7, where it is compared with the exact expression given by Equation (8) for 

different values of . 



 

Figure 7. Negative stiffness component of the suspension for different values of the system parameters: (a,b) 1.2b =  and  = 0.5177, 

0.6471, 0.7765; (c,d) 0.8b =  and  = 0.5538, 0.6923, 0.8308; (e,f) 0.5b =  and  = 0.6000, 0.7500, 0.9000. (a,c,e) Schematic of the 

linkage, (b,d,f) non-dimensional force-deflection curve: exact expressions (solid lines), cubic approximations (dashed lines), 

horizontal spring limits (circle markers), singular configuration (vertical solid lines), collision with frame (vertical dash-dotted line), 

collision with links (vertical dashed line). 

 

It can be seen from Figure 7(a,b), that when 
ˆ 1b  , the force tends to infinite values when approaching both the 

singular configurations given by Equations 4(a,b), which are indicated by the vertical solid lines. More 

specifically, when approaching the singular configuration for negative values of z, the force tends to − , and 



when approaching the one for positive values of z, the force tends to 1s gn( )2i b b − − + +  , which is 

positive (negative) when  is greater (less) than ( 1) ( )1 2TR b b + += . In Figure 7, the three values of   used 

to plot the curves are selected so that they are 0.8, 1 and 1.2 times the critical value 
TR . Note that the stiffness 

can be either positive or negative when approaching the asymptote for positive z. This is because the horizontal 

spring can theoretically work in tension or compression at this point, depending on its free length, which is 

discussed further below.  

From Figure 7(c,d), when 0.7 1b  , there is only one singular configuration for positive values of z, which is 

indicated by the vertical solid line on the right. The dashed line on the left indicates the limit for the condition 

shown in Figure 6(d), given in Eq. (5b). 

From Figure 7(e,f), when 0.7b  , the dash-dotted line on the left indicates the limit for the condition indicated 

in Figure 6(c), given in Eq. (5a). 

Although there is a qualitative difference in behaviour given by Eq. (10) for large displacements, it is evident 

from Figure 7, that for displacements values less than about 40% of a, Equation (10) is a good approximation of 

Eq. (8).  

 

3.2. Positive stiffness component and global characteristic 

The vertical spring in Figure 5 supports the weight of the mass so that the device configuration at rest is such 

that the link of length 2b is vertical, and the link of length a is horizontal. This yields a net force
v vf k z= , with 

the condition 2 (1 )v akb m g− =  for equilibrium, where 2b is the free length of the vertical spring,   is the 

vertical spring length factor and g is the acceleration due to gravity. This latter condition gives a lower limit for 

the stiffness 
vk , which ideally should not be less than 2am g b .  

To ensure quasi-zero stiffness of the device at the equilibrium configuration, the ratio of the vertical to the 

horizontal spring stiffness should be 2(1 )v hk k k = = − , so that the approximate non-dimensional force-

displacement relationship for the whole system in Figure 5 is given by ( ) 32 1 2h zf  − . 

Other constraints may also affect the design of the suspension system. For example, readily available 

commercial springs usually only work in tension or compression. To ensure that the springs always work in 

tension in the device, the actual spring lengths are greater than their free lengths. Here, it is considered that the 

free length of the springs are the same as their solid lengths, to limit the number of design parameters.  



For the horizontal spring, the limiting conditions correspond to 
max1 2Px − = , where maxPx  is the non-

dimensional maximum value of Equation (7) reached during motion. In terms of the non-dimensional 

displacement, this yields 
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where the subscript h stands for horizontal spring. 

In the case when 0.7b  , the limiting condition in Figure 6(d) also applies for negative values of z , so that if 

0.5  , the horizontal spring will always work in tension. However, if 0.5  , the horizontal spring will 

work in tension provided that 
hz z −  in Eq. (11a). 

In the case when 0.7b  , the limiting condition in Figure 6(c) also applies for negative values of z , so that if 

21 b  − , the horizontal spring will always work in tension. However, if 
21 b  − , the horizontal spring will 

work in tension provided that 
hz z −  in Eq. (11a). 

For positive values of z , the limiting condition in Figure 6(a) applies, so that the horizontal spring will always 

work in tension provided that 
TR  . However, if 

TR  , the horizontal spring will work in tension provided 

that 
hz z +  in Eq. (11b). 

For the vertical spring, the limiting condition occurs only for negative values of z , as 

 

 ( )2 1v bz − = − −

      

(11c) 

 

where the subscript v stands for vertical spring. 

The geometric limitations and spring limitations of the proposed device suspension are summarised in 

Appendix A, using a more detailed dimensional form. 



To avoid the conditions in Equations (11a-c) both  and  should be relatively small. Combining the equations 

for the equilibrium of the vertical and horizontal springs results in  
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b



= −

−

      

(12) 

 

where 
a hp m g ak= is the non-dimensional weight of the mass, so that if  decreases, then  increases, and an 

accurate check is thus required. This is performed in the dynamic simulations presented in the next section.  

The limits due to the horizontal free spring length are shown in Figure 7(b,d,f) by circle markers. Figure 8 then 

shows the global characteristic of the device suspension and corresponding limits due to both free spring 

lengths, for the same combinations of parameters used in Figure 7. It can be seen that as the free length of the 

horizontal spring increases, then the limitations due to the horizontal spring (circle markers) move towards the 

smaller values of z , while the limitation due to the vertical spring ((diamond markers) moves towards the 

larger values of z . Also, the value of p  has to decrease for increasing values of , to ensure that  remains 

positive, as indicated in Eq. (12). It can be seen that an overall linear-like quasi-zero stiffness behaviour is 

achieved in the approximate range where 0.3z  , which is indicated in Figures 8(b), 8(d) and 8(f) by a shaded 

region. 



 

Figure 8. Global stiffness component of the suspension for different values of the system parameters: (a,b) 0.7p = , 1.2b =  and  = 

0.5177, 0.6471, 0.7765; (c,d) 0.5p = , 0.8b =  and  = 0.5538, 0.6923, 0.8308; (e,f) 0.2p = , 0.5b =  and  = 0.6000, 0.7500, 0.9000. 

(a,c,e) Schematic of the linkage, (b,d,f) non-dimensional force-deflection curve: 0.8 TR =  (dotted lines), TR = (solid lines), 

1.2 TR =  (dashed lines), horizontal spring limits (circle markers), vertical spring limits (diamond markers), singular configuration 

(vertical solid lines), collision with frame (vertical dash-dotted line), collision with links (vertical dashed line). Shaded regions in (b), 

(d) and (f) indicate the conditions for linear-like quasi-zero stiffness behaviour. 

 



4 Dynamic analysis of the device: fundamental behaviour and effect of nonlinearity  

In this section, the dynamic behaviour of the proposed translational Lanchester damper with quasi-zero stiffness 

attached to a single degree-of-freedom system host structure is investigated. The system is shown in Figure 9, 

where m, k and c are the mass, stiffness and damping of the host structure, respectively, and ( )cosf F t=  is 

the excitation force. Henceforth, the symbol for the viscous linear damper in the device, illustrated in Figure 

4(a), is omitted for clarity. 

 

Figure 9. Lanchester damper with quasi-zero stiffness hanged from a single degree-of-freedom host structure (a viscous dashpot ca in 

parallel to the vertical spring kv is omitted for clarity). 

 

The equations of motion of the system are  

 

 
( )cosa v hmx cx kx c z k z f F t+ + − − − =

     
(13a)

 

 
0a a a a v hm x c z k z f+ + + =

       
(13b) 

 

where fh is given by Eq. (8), and 
az x x= −

 
is the relative displacement between the mass of the device, xa, and 

the mass of the host structure, x. 

To investigate the effect of the device parameters on the dynamic behaviour, Equations (13a) and (13b) are 

rewritten in non-dimensional form making use of the approximate expression in Equation (10), to give 

 



 
( ) ( )ˆ ˆ ˆ ˆ1 2 cosx x x z     + + + = − +      (14a) 

 
3 ˆˆ ˆ ˆ2 az z z x     + + = −

      
(14b) 

 

where 
0x̂ x x=

 
and

 0ẑ z x=  are the non-dimensional displacement of the host structure and the non-

dimensional relative displacement, respectively, with 
0x F k=

 
being the static deflection due to the static force 

F; 2c km =
 
and

 
2a ac km =  are the non-dimensional damping coefficients of the host structure and 

device, respectively; 
am m =

 
is the mass ratio; 

n  =
 
is the non-dimensional forcing frequency, where 

n k m = ; primes denote differentiation respect to the non-dimensional time 
nt = , and 

( ) 2 2

02 21 hx k a k −= .  

 

4.1. Fundamental analysis of the linear zero-stiffness device 

A linear analysis is performed in this section to emphasise some essential characteristics of the system 

behaviour. In this case, the non-dimensional equations of motion of the system are those from Eq. (14a,b) with 

0 = , i.e.   the Lanchester damper has zero-stiffness [35,36]. The frequency response in terms of the non-

dimensional amplitude displacement
 
X̂  of the host structure is then given by 
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(15) 

 

As discussed in Section 2, if either the mass or damping of the device is very small, the device is ineffective, 

and if the damping is very large, then the mass of the host structure moves together with that of the device, also 

rendering it ineffective. An optimum damping for the linear Lanchester damper exists and was derived in [35]. 

This is illustrated in Figure 10, which shows the response of the host structure for different values of damping 

ratio. It can be noted that for relative light damping (dotted line) the peak amplitude is reduced, but the 

resonance frequency is not changed appreciably. When the damping is relatively high (dashed line) the 



combined system behaves as a single degree-of-freedom oscillator with a mass equal to the mass of the host 

structure plus that of the auxiliary device. In this case, the resonant frequency shifts from 1 to ( )
1 2

1 
−

+ . From 

relatively low to relatively high values of damping, the frequency response of X̂ changes and reaches a case 

when the resonant peak is the lowest possible (solid line in Figure 10), which corresponds to the optimum 

damping value given in [35].  

 

Figure 10. Effect of the non-dimensional damping on the frequency response of the system in Figure 9. Displacement amplitude of 

the host structure for  = 0.1,  = 0.005, and a = 5 (thick dashed line), a = 0.05 (thick solid line) and a = 0.0005 (thick dotted line). 

The frequency response of the system without the device attached is denoted by the thin dashed line. 

 

To find a usable expression of the resonance frequency and its corresponding peak displacement amplitude, 

Equation (15) can be approximated in the proximity of  = 1, for small mass ratios as 
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and solved for the peak to give 
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To calculate the minimum value of the peak, the derivative of Equation (16b) respect to a is set to zero, and 

solved to give 2a = , which agrees with the optimum damping of a Lanchester damper for small values of the 

mass ratio [3,35,36,45]. The corresponding resonance frequency and corresponding expression for the peak are 

given by  
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(18a,b) 

 

To investigate the shift in the resonance frequency with respect to the original structure (without the  device), 

Equation (18a) can be expanded in series to the first term for small values of the mass ratio to yield

 
2*

min 1 4 O   − + . Note that the shift in the resonance frequency is a function of the mass ratio only, 

whilst the minimum peak is a function of both the mass ratio and the damping. 

 

4.2. Dynamic analysis of the quasi-zero stiffness device 

The dynamic performance of the proposed translational Lanchester damper which exploits a quasi-zero stiffness 

suspension is presented in terms of the analytical frequency response curve. Although linear-like behaviour is 

sought for the device, the effect of the nonlinearity is investigated here to understand the limits for such a linear 

behaviour to be deliberately exploited. 

Thus, assuming a predominantly harmonic response, Equations (14a,b) can be solved analytically by applying 

the harmonic balance method, and the stability of the solution studied by applying Floquet theory as detailed in 

[46]. Following this procedure, the amplitude-frequency equations are given by 
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Equations (19a,b) are solved for some combinations of the system parameters so that the frequency response 

curve of the combined two degree-of-freedom nonlinear system can be compared to that of the linear system. 

Using the approximate optimum damping for the ideal Lanchester damper, i.e. 2a =  , the behaviour of the 

system is shown in Figure 11(a,b) for a relatively low and high value of nonlinearity, respectively. For 

validation, the solution obtained by the numerical integration of the exact equations of motion to a stepped sine 

excitation is superimposed as a thick black dotted line to the approximate analytical solution of the amplitude-

frequency equation. It can be seen in Figure 11(a) that the Lanchester damper with quasi-zero stiffness behaves 

similarly to the ideal Lanchester damper for relatively small values of nonlinearity. A relatively high increase in 

the nonlinearity, as Figure 11(b), is detrimental in terms of damping performance.   



 

Figure 11. Effect of the device on the frequency response of the host structure. Non-dimensional displacement amplitude for (a,b)  = 

2a  = 0.1,  = 0.025 and (c,d)   = 0.1, a =  = 0.015. (a)  = 5×10-4, (b)  = 45×10-4, (c)  = 10-4, (d)  = 7×10-4. Response with the 

device not attached (thin dashed line), with ideal linear device (thin solid line), and with nonlinear device: stable solutions (thick solid 

lines), unstable solutions (thick dashed lines), quasi-periodic solutions (thick dotted lines). Solution of the equations of motion due to a 

stepped sine (thicker dotted line). 

If the approximate optimum damping condition is discarded, and 2a is less than , then different dynamics can 

appear, as illustrated in the frequency responses shown in Figure 11(c,d). In particular, the behaviour shown in 

Figure11(c) is similar to that in Figure 11(a). However, when the nonlinearity is increased, as in Figure 11(d), 

the appearance of regions of unstable harmonic solutions (dotted line), with quasi-periodic motion [24], and 

detached response [25], manifest, leading to undesirable dynamics . It is worth noting that classical sweep or 

stepped sine excitation may not excite a detached resonance curve [46]. Quasi-periodic motion and detached 

curves are seen here as undesirable effects arising from pushing the device beyond its operational range in 

which the device has linear-like behaviour, and are not investigated further. The interested reader is directed to 

[24,25] for insight into the nonlinear dynamics of this type of system. 

In the case where 2a is greater than , there is no particular benefit, unless there are relatively high values of 

nonlinearity. Since such working condition is not the focus of the paper, it is not shown in the figures. 



Provided that undesirable dynamics are thus avoided through an appropriate design, the proposed translational 

Lanchester damper with quasi-zero stiffness broadly performs as the ideal zero-stiffness Lanchester damper. It 

provides a very low stiffness in a limited displacement range around the equilibrium position, exhibiting linear-

like behaviour.  

 

4.3. Virtual experiments 

To bridge the gap between a simplified analytical model and experimental work on a prototype device, some 

multi-body simulations were carried out. The main advantage of such simulations, with respect to the numerical 

solution of the equations of motion, is that physical parameters can be used, and quantitative results are 

accompanied by visual animations for a closer examination of the mechanical behaviour. A virtual model of the 

device attached to the host structure was assembled as shown in Figure 12(a), and the system response was 

determined in terms of a quasi-static test and a slow dynamic sweep test.  

The dimensional system parameters are given in Table 1, and the result of a simulated quasi-static test is shown 

in Figure 12(b), together with the result from the analytical model. Animation 1, in the supplementary material, 

shows the simulated quasi-static test. 

For the dynamic test, simulation was performed for a value of the excitation force amplitude, namely F = 

0.2548 N, which corresponds to the non-dimensional parameters used in Figures 11(a). Figure 12(c) then shows 

the response to a slow sweep together with the results from the analytical model. The peak amplitude of the 

non-dimensional relative displacement resulted to be about 0.25<0.3, which is within the limit assumed above 

in Section 3.2 for a linear-like behaviour. Animations 2, provided as supplementary material, show the 

simulated dynamic test. 

 



 

Figure 12. (a) Virtual model of the device on a single degree-of-freedom host structure with parameters in Table 1. (b) Results of a 

quasi-static test: multi-body (dotted line), analytical (solid line), technological springs limits (markers). (c) Dynamic results of a slow 

sweep test, with F = 0.2548 N: virtual experiment (thin grey line), analytical expression (thick solid line), system without device 

attached (dashed line). Shaded region in (b) indicates the conditions for linear-like quasi-zero stiffness behaviour. 

 

Table 1. Parameters for the virtual experiment using multi-body simulation. 

m [kg] k [N/m] c [Ns/m] ma [kg] kh [m] ca [Ns/m]  [m] a [m] b [m] g [m/s2] 

1.5 9 0.1837 0.15 10 0.3674 0.9 0.8 0.6 9.81 

 

5 Experimental work  

A prototype of the translational Lanchester damper with quasi-zero stiffness is illustrated in Figure 13(a). The 

linkage was designed such that a=b=0.035 m. The stiffness of the horizontal and vertical springs were 



estimated from separate measurements to be kh=2210 N/m and kv=718 N/m, respectively, and the suspended 

mass was ma=1.5 kg. 

The experimental force-displacement curve was first measured by a quasi-static test, where the device was 

mounted in a load testing machine (ZwickiLine TH 2.5 kN), and an expanding saw tooth displacement cycle 

was imposed with a loading rate of 100 mm/min. The result of this test is shown in Figure 13(b) as a thick solid 

black line giving the hysteresis curve. Also shown in the graph are the predicted exact and approximate force-

displacement curves as thin solid and dashed lines respectively, and the theoretical limits due to the free lengths 

of the springs. The equivalent free spring length factors of the horizontal and vertical springs were estimated 

based on the expressions reported in Section 3.2 to be  . 21 0 7072a vkm g b = − =  and 1 2 0.8376v hk k = − = . 

Examining Figure 13(b), it can be seen that the experimental test was performed up the technological limit of 

the vertical spring. The non-dimensional condition assumed in Section 3.2 for linear-like behaviour, now 

reflects in about 0.01z  m, which is indicated by the shaded region in Figure 13(b). 

 

Figure 13. Physical prototype of the device. (a) Photograph of the device with suspended mass in its equilibrium configuration. (b) 

Result of an experimental quasi-static test: hysteretic cycle (thick solid line), theoretical curve (thin solid line), cubic approximation 

(thin dashed line), spring free length limits (markers). Shaded region in (b) indicates the conditions for linear-like quasi-zero stiffness 

behaviour. 

 

 

 



5.1. Attachment of the device to a simple oscillator 

The prototype device was mounted on a long-stroke vibration shaker (APS113 ELECTRO-SEIS®), which 

emulates a forced single degree-of-freedom oscillator, as shown in Figure 14. The shaker moving mass with 

support features attached was 6.8 kg, and the mass of the device was 2.2 kg in this case. The stiffness and 

damping of the shaker were then estimated by linear fitting, as 2400 N/m and 22.72 N/ms2, respectively. The 

horizontal and vertical spring of the device were manually adjusted until the device was approximately in its 

quasi-zero stiffness condition, and the damping was estimated, assuming linear-like behaviour, to be 11.61 

N/ms2.  

 

Figure 14. Photograph of the prototype device mounted on an electro-dynamic shaker, which emulated a force single degree-of-

freedom oscillator. 

Experimental data were collected at single excitation frequencies and low excitation amplitude to induce linear-

like behaviour. A reference voltage supplied to the shaker amplifier was measured as was the displacement of 

the shaker mass using a displacement laser sensor (Omron ZX2-LD100). Three experiments were conducted. In 

the first test, the frequency response between the reference voltage and the shaker displacement of the shaker 

alone (device removed) was measured. In the second test, the mass of the device was directly connected to the 

shaker, and the same frequency response was measured again. In the third test, the effect of the device on the 



shaker was measured, again using the same frequency response. Figure 15 shows the experimental 

measurements (dynamic displacement/displacement at 1 Hz) along with the corresponding linear fitted model.  

It is first noted that the results in Figure 15 are similar to those in Figure 10. In particular, it can be seen that the 

effect of the device (solid line and circles) is to introduce additional damping to the shaker. At low frequencies 

(around 2 Hz), however, locking of the device linkage occurred due to friction in the bearings, and this is 

evident from the experimental data (circles). In this region, the shaker and the device moved together, and the 

experimental data thus follows the dash-dotted line. When the frequency was high enough to break the internal 

friction in the linkage, then the experimental data shift, and align to the frequency response of the shaker alone 

with a resonance at about 3 Hz, as expected from the discussion in Section 4. A simple linear viscous damping 

model (thick solid line in Figure 15) is thus assumed to represent the experimental system dynamics (circles) 

once friction-locking has been broken. The assumption of such linear-like behaviour for damping is based on 

the relative small displacement amplitude across the device, which did not exceed the threshold of 0.01 m 

highlighted in Figure 13(b).  

 

Figure 15. Results of the experimental test with the device on an electro-dynamic shaker. Displacement transmissibility of the shaker 

alone: experiments (asterisks), and model (thin dashed line). Displacement transmissibility of the shaker plus the mass of the device: 

experiments (squares), and model (thin dash-dotted line). Displacement transmissibility of the shaker with attached device: 

experiments (circles), and model (thick solid line). 

 

5.2. Attachment of the device to multi-modal structures 

The device was attached to two different multi-modal structures. The aim of these tests was to demonstrate the 

efficacy of the device on real engineering structures. The device was first attached to the tip of a cantilever steel 

beam with cross-sectional dimensions 100 mm × 50 mm, wall thickness 3 mm, with a free length of 1.8 m 



(estimated weight about 13 kg), as shown in Figure 16(a). Excitation was provided by a shaker (Dataphysics 

Signal Force V20) hanging from a supporting structure, using a stinger and a force transducer (PCB 208C03) 

located at approximately 0.7 m from the fixed end. An accelerometer (PCB 352C03) was located on the beam 

tip where the device was attached. A vibration controller and data acquisition system (Dataphysics Abaqus 730) 

was adopted, and a swept sine signal was used to excite the beam over a range of 5–600 Hz with a logarithmic 

sweep lasting 40 s. The device mass was 1.5 kg. The measured frequency response of the beam with and 

without the device is shown in Figure 16(b) as a solid and dashed line, respectively. For a better overall 

visualization, the accelerance is plotted, and a logarithmic scale is adopted. A detailed analysis of the 

effectiveness of the device is given following the description of the second multi-modal structure experiment. 

 



Figure 16. Experimental setup of the device connected to a cantilever beam. (a) Photograph and (b) frequency response without 

(dashed line) and with the device attached (solid line). 

The device was then attached to the tip of a wind turbine blade constructed from glass reinforced plastic, with a 

free length of approximately 2.3 m and mass approximately 11 kg, as shown in Figure 17(a), but in this case, 

the device mass was 1 kg. The measured frequency response of the blade with and without the device is shown 

in Figure 17(b) as a solid and dashed line, respectively. Again, for better overall visualization, the accelerance is 

plotted, and a logarithmic scale is adopted. Excitation was provided by a shaker (Dataphysics Signal Force V20) 

hanging from a supporting structure, using a stinger and a force transducer (PCB 208C03) located at 

approximately 0.2 m from the fixed end. An accelerometer (PCB 352C03) was located on the tip of the blade 

where the device was attached. A vibration controller and data acquisition system (Dataphysics Abaqus 730) 

was adopted, and a swept sine signal was used to excite the blade over a range of 5–100 Hz with a logarithmic 

sweep lasting 40 s. 

For both experiments, it was verified that the displacement amplitude across the device did not exceed the limit 

of 0.01 m highlighted in Figure 13(b) as the threshold for the linear-like behaviour. 

 



 

Figure 17. Experimental setup of a wind turbine blade. (a) Photograph and (b) frequency response without (dashed line) and with the 

device attached (solid line). 

From a preliminary observation, it can be seen that the effect of the device is much more evident on the blade 

than on the beam. However, for better insight, a close-up of both frequency response curves close to the first 

natural frequency in each case are shown in Figure 18(a) and (b), for the beam and the blade, respectively. Now, 



rather than accelerance, the receptance is plotted using a linear scale, so that the results can be compared to the 

theoretical predictions based on Section 4. Along with the results of the structures with and without the device 

attached, the frequency response of the structure with the device mass directly attached to the host structures via 

a Dyneema® cord are also shown as dash-dotted lines. The purpose of this latter measurement is to facilitate a 

better comparison between the theoretical and experimental results. 

 

Figure 18. Close-up of the measured frequency response around the first mode of (a) the beam and (b) the blade: structure alone (thin 

dashed line), with device mass directly attached (thin dash-dotted line), with the device on (thick solid line). Theoretical expectation 

using a linear ideal zero-stiffness device is indicated with a thin solid line. 

Figures 18(a) and (b) again illustrate the effect shown earlier in Figure 10. By denoting the first resonance 

frequency of the structure alone as  f1  and the first natural frequency of the host structure with directly attached 

device mass ma, as f0 , it is possible to estimate an equivalent single degree-of-freedom model of the structure 

by the following system of equations  

 ( ) ( )
2 2

1 02 ,        2
eq eq

eq eq a

k k
f f

m m m
 = =

+      
(21a,b) 

where keq and meq are the unknown equivalent stiffness and mass of the structure, in the single degree-of-

freedom assumption. The solutions for keq and meq are given in Table 2. The damping estimates using the half-

power points are also given in Table 2, as is the mass ratio eq  between the device mass and meq, and the mass 

ratio eff , between the device mass and the mass of the structure. Also shown in Table 2 is the load factor , 

which is a simple scaling factor adopted to account for the fact that the excitation force on both structures was 

not collocated with the device.  

Equation (15) in Section 4.1 is used to estimate the value of damping a in the device, assuming that it is a 

linear zero-stiffness device. Since the device suspension was the same on both structures, a trade-off estimate of 



the damping coefficient resulted in  ca = 3 Ns/m, which leads to a = 0.009 for the beam experiment and a = 

0.024 for the blade experiment. The theoretical result is plotted as thin solid lines in Figure 18(a) and (b). It can 

be seen that although very crude estimates and assumptions have been made, the theoretical expectations 

fundamentally captured the measured experimental behaviour. 

Table 2. Estimated parameters of the equivalent single degree-of-freedom model of the experimental structures in their first mode of 

vibration. 

 f0 [Hz] f1 [Hz] meq [kg] keq [N/m]  [-] eq [-] eff [-]  [-] 

Beam 11.33 15.55 1.70 1.62×104 0.01 0.88 0.11 3.68 

Blade 8.20 6.09 1.23 3.27×103 0.0095 0.81 0.09 7.51 

 

It should be noted that no attempt was made to optimise the damping in the prototype device, as the research 

focussed on the stiffness element. On the other hand, the optimal damping is dependent upon the structure to 

which the device is attached and various articles, e.g. [3,35,36,45], have reported this since the invention of the 

original damper by Lanchester.  

6 Conclusions  

This paper has presented an investigation into the design of a quasi-zero stiffness element used in parallel with a 

translational Lanchester damper. This device has the advantage of being inertial and capable of adding damping 

to a structure over a broad range of frequencies, unlike the dynamic vibration absorber, which is tuned to a 

specific frequency. The key is to design the spring element in the device so that its stiffness is close to zero. To 

achieve this, a nonlinear negative stiffness was used in this paper, which was realised using a combination of a 

linear spring and few rigid links arranged in a specific configuration. Essentially, the negative stiffness was 

exploited in parallel to the linear stiffness element to obtain the global quasi-zero stiffness effect. The working 

condition of the device was designed to limit undesired nonlinear behaviour during dynamic motion, and this 

restricted the displacement amplitude across the linkage. The design constraints and how they affect the 

nonlinearity have been investigated, resulting in general guidelines to achieve a desired linear-like behaviour of 

the device during operation. A prototype of the device was manufactured and tested on a single mode and two 

multi-modal structures to validate the theory, demonstrating the efficacy of the device.  
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Appendix A. Limitations due to geometry and springs for the proposed device 
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