Journal article 661 views 331 downloads
Influence of temperature and dimension in a 4H-SiC vertical power MOSFET
Engineering Research Express, Volume: 2, Issue: 4, Start page: 045020
Swansea University Authors: MUSTAFA ALQAYSI, Antonio Martinez Muniz , Stephen Batcup
-
PDF | Version of Record
© 2020 The Author(s). Released under the terms of the Creative Commons Attribution 4.0 license
Download (3.16MB)
DOI (Published version): 10.1088/2631-8695/abc52b
Abstract
A study of the impact of dimension and temperature on a state of the art 4H-SiC power vertical DMOSFET has been carried out using drift-diffusion calculations in conjunction with electrical characterizations to extract physical parameters and doping profiles in a 6 μm channel length device. The mode...
Published in: | Engineering Research Express |
---|---|
ISSN: | 2631-8695 |
Published: |
IOP Publishing
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55865 |
first_indexed |
2020-12-10T13:33:04Z |
---|---|
last_indexed |
2021-03-13T04:19:50Z |
id |
cronfa55865 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-03-12T13:02:24.8840351</datestamp><bib-version>v2</bib-version><id>55865</id><entry>2020-12-10</entry><title>Influence of temperature and dimension in a 4H-SiC vertical power MOSFET</title><swanseaauthors><author><sid>c9651f82627c36aae7e19874682a8931</sid><firstname>MUSTAFA</firstname><surname>ALQAYSI</surname><name>MUSTAFA ALQAYSI</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cd433784251add853672979313f838ec</sid><ORCID>0000-0001-8131-7242</ORCID><firstname>Antonio</firstname><surname>Martinez Muniz</surname><name>Antonio Martinez Muniz</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2c886b1d08dd1f732d4f43f4aafc1949</sid><ORCID/><firstname>Stephen</firstname><surname>Batcup</surname><name>Stephen Batcup</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-12-10</date><abstract>A study of the impact of dimension and temperature on a state of the art 4H-SiC power vertical DMOSFET has been carried out using drift-diffusion calculations in conjunction with electrical characterizations to extract physical parameters and doping profiles in a 6 μm channel length device. The model presented in this paper includes the effect of trapping in the channel/oxide interface. Using these parameters, the performance of corresponding lateral and vertical scaled devices are studied. Electrothermal simulations showing self-heating effects are also carried out. The results are qualitatively discussed with the help of an analytical physical model, which considers the interplay between the different device resistances. At low drain bias, the drain current is increased by 42.86% (ID = 5 A at VG = 20 V) when reducing the dimension vertically, whereas it is decreased by 28.57% (ID = 2.5 A at VG = 20 V) when reducing the dimension laterally. These effects are enhanced at high drain bias. In addition, the effect of dimension reduction for breakdown voltage, electric field and impact ionization is investigated. A substantial reduction in breakdown voltage was found when the vertical dimensions were decreased as compared to the lateral dimensions.</abstract><type>Journal Article</type><journal>Engineering Research Express</journal><volume>2</volume><journalNumber>4</journalNumber><paginationStart>045020</paginationStart><paginationEnd/><publisher>IOP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2631-8695</issnElectronic><keywords>SiC, DMOSFET, power devices, device modelling, 4H-SiC VDMOSFET</keywords><publishedDay>11</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-11-11</publishedDate><doi>10.1088/2631-8695/abc52b</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-03-12T13:02:24.8840351</lastEdited><Created>2020-12-10T13:30:55.5502433</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>MUSTAFA</firstname><surname>ALQAYSI</surname><order>1</order></author><author><firstname>Antonio</firstname><surname>Martinez Muniz</surname><orcid>0000-0001-8131-7242</orcid><order>2</order></author><author><firstname>B</firstname><surname>Ubochi</surname><order>3</order></author><author><firstname>Stephen</firstname><surname>Batcup</surname><orcid/><order>4</order></author><author><firstname>K</firstname><surname>Ahmeda</surname><order>5</order></author></authors><documents><document><filename>55865__18863__27a583feda014fec8ed37c60ff230244.pdf</filename><originalFilename>55865.pdf</originalFilename><uploaded>2020-12-10T13:32:51.1506810</uploaded><type>Output</type><contentLength>3308940</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2020 The Author(s). Released under the terms of the Creative Commons Attribution 4.0 license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-03-12T13:02:24.8840351 v2 55865 2020-12-10 Influence of temperature and dimension in a 4H-SiC vertical power MOSFET c9651f82627c36aae7e19874682a8931 MUSTAFA ALQAYSI MUSTAFA ALQAYSI true false cd433784251add853672979313f838ec 0000-0001-8131-7242 Antonio Martinez Muniz Antonio Martinez Muniz true false 2c886b1d08dd1f732d4f43f4aafc1949 Stephen Batcup Stephen Batcup true false 2020-12-10 A study of the impact of dimension and temperature on a state of the art 4H-SiC power vertical DMOSFET has been carried out using drift-diffusion calculations in conjunction with electrical characterizations to extract physical parameters and doping profiles in a 6 μm channel length device. The model presented in this paper includes the effect of trapping in the channel/oxide interface. Using these parameters, the performance of corresponding lateral and vertical scaled devices are studied. Electrothermal simulations showing self-heating effects are also carried out. The results are qualitatively discussed with the help of an analytical physical model, which considers the interplay between the different device resistances. At low drain bias, the drain current is increased by 42.86% (ID = 5 A at VG = 20 V) when reducing the dimension vertically, whereas it is decreased by 28.57% (ID = 2.5 A at VG = 20 V) when reducing the dimension laterally. These effects are enhanced at high drain bias. In addition, the effect of dimension reduction for breakdown voltage, electric field and impact ionization is investigated. A substantial reduction in breakdown voltage was found when the vertical dimensions were decreased as compared to the lateral dimensions. Journal Article Engineering Research Express 2 4 045020 IOP Publishing 2631-8695 SiC, DMOSFET, power devices, device modelling, 4H-SiC VDMOSFET 11 11 2020 2020-11-11 10.1088/2631-8695/abc52b COLLEGE NANME COLLEGE CODE Swansea University 2021-03-12T13:02:24.8840351 2020-12-10T13:30:55.5502433 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised MUSTAFA ALQAYSI 1 Antonio Martinez Muniz 0000-0001-8131-7242 2 B Ubochi 3 Stephen Batcup 4 K Ahmeda 5 55865__18863__27a583feda014fec8ed37c60ff230244.pdf 55865.pdf 2020-12-10T13:32:51.1506810 Output 3308940 application/pdf Version of Record true © 2020 The Author(s). Released under the terms of the Creative Commons Attribution 4.0 license true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Influence of temperature and dimension in a 4H-SiC vertical power MOSFET |
spellingShingle |
Influence of temperature and dimension in a 4H-SiC vertical power MOSFET MUSTAFA ALQAYSI Antonio Martinez Muniz Stephen Batcup |
title_short |
Influence of temperature and dimension in a 4H-SiC vertical power MOSFET |
title_full |
Influence of temperature and dimension in a 4H-SiC vertical power MOSFET |
title_fullStr |
Influence of temperature and dimension in a 4H-SiC vertical power MOSFET |
title_full_unstemmed |
Influence of temperature and dimension in a 4H-SiC vertical power MOSFET |
title_sort |
Influence of temperature and dimension in a 4H-SiC vertical power MOSFET |
author_id_str_mv |
c9651f82627c36aae7e19874682a8931 cd433784251add853672979313f838ec 2c886b1d08dd1f732d4f43f4aafc1949 |
author_id_fullname_str_mv |
c9651f82627c36aae7e19874682a8931_***_MUSTAFA ALQAYSI cd433784251add853672979313f838ec_***_Antonio Martinez Muniz 2c886b1d08dd1f732d4f43f4aafc1949_***_Stephen Batcup |
author |
MUSTAFA ALQAYSI Antonio Martinez Muniz Stephen Batcup |
author2 |
MUSTAFA ALQAYSI Antonio Martinez Muniz B Ubochi Stephen Batcup K Ahmeda |
format |
Journal article |
container_title |
Engineering Research Express |
container_volume |
2 |
container_issue |
4 |
container_start_page |
045020 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2631-8695 |
doi_str_mv |
10.1088/2631-8695/abc52b |
publisher |
IOP Publishing |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
A study of the impact of dimension and temperature on a state of the art 4H-SiC power vertical DMOSFET has been carried out using drift-diffusion calculations in conjunction with electrical characterizations to extract physical parameters and doping profiles in a 6 μm channel length device. The model presented in this paper includes the effect of trapping in the channel/oxide interface. Using these parameters, the performance of corresponding lateral and vertical scaled devices are studied. Electrothermal simulations showing self-heating effects are also carried out. The results are qualitatively discussed with the help of an analytical physical model, which considers the interplay between the different device resistances. At low drain bias, the drain current is increased by 42.86% (ID = 5 A at VG = 20 V) when reducing the dimension vertically, whereas it is decreased by 28.57% (ID = 2.5 A at VG = 20 V) when reducing the dimension laterally. These effects are enhanced at high drain bias. In addition, the effect of dimension reduction for breakdown voltage, electric field and impact ionization is investigated. A substantial reduction in breakdown voltage was found when the vertical dimensions were decreased as compared to the lateral dimensions. |
published_date |
2020-11-11T20:10:26Z |
_version_ |
1821437567448383488 |
score |
11.047609 |