No Cover Image

Journal article 772 views 111 downloads

3D semiconducting nanostructures via inverse lipid cubic phases

M. R. Burton, C. Lei, P. A. Staniec, N. J. Terrill, A. M. Squires, N. M. White, Iris S. Nandhakumar, Matthew Burton Orcid Logo

Scientific Reports, Volume: 7, Issue: 1

Swansea University Author: Matthew Burton Orcid Logo

  • burton2017.pdf

    PDF | Version of Record

    Distributed under the terms of a Creative Commons Attribution (CC-BY-4.0)

    Download (2.46MB)

Abstract

Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for...

Full description

Published in: Scientific Reports
ISSN: 2045-2322
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50237
first_indexed 2019-05-09T20:01:17Z
last_indexed 2019-07-18T21:34:51Z
id cronfa50237
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-07-18T14:51:22.6704664</datestamp><bib-version>v2</bib-version><id>50237</id><entry>2019-05-07</entry><title>3D semiconducting nanostructures via inverse lipid cubic phases</title><swanseaauthors><author><sid>2deade2806e39b1f749e9cf67ac640b2</sid><ORCID>0000-0002-0376-6322</ORCID><firstname>Matthew</firstname><surname>Burton</surname><name>Matthew Burton</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-05-07</date><deptcode>EAAS</deptcode><abstract>Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics.</abstract><type>Journal Article</type><journal>Scientific Reports</journal><volume>7</volume><journalNumber>1</journalNumber><publisher/><issnElectronic>2045-2322</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1038/s41598-017-06895-5</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-07-18T14:51:22.6704664</lastEdited><Created>2019-05-07T09:56:55.0812295</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>M. R.</firstname><surname>Burton</surname><order>1</order></author><author><firstname>C.</firstname><surname>Lei</surname><order>2</order></author><author><firstname>P. A.</firstname><surname>Staniec</surname><order>3</order></author><author><firstname>N. J.</firstname><surname>Terrill</surname><order>4</order></author><author><firstname>A. M.</firstname><surname>Squires</surname><order>5</order></author><author><firstname>N. M.</firstname><surname>White</surname><order>6</order></author><author><firstname>Iris S.</firstname><surname>Nandhakumar</surname><order>7</order></author><author><firstname>Matthew</firstname><surname>Burton</surname><orcid>0000-0002-0376-6322</orcid><order>8</order></author></authors><documents><document><filename>0050237-13052019110429.pdf</filename><originalFilename>burton2017.pdf</originalFilename><uploaded>2019-05-13T11:04:29.6870000</uploaded><type>Output</type><contentLength>2637871</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-05-13T00:00:00.0000000</embargoDate><documentNotes>Distributed under the terms of a Creative Commons Attribution (CC-BY-4.0)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2019-07-18T14:51:22.6704664 v2 50237 2019-05-07 3D semiconducting nanostructures via inverse lipid cubic phases 2deade2806e39b1f749e9cf67ac640b2 0000-0002-0376-6322 Matthew Burton Matthew Burton true false 2019-05-07 EAAS Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics. Journal Article Scientific Reports 7 1 2045-2322 31 12 2017 2017-12-31 10.1038/s41598-017-06895-5 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2019-07-18T14:51:22.6704664 2019-05-07T09:56:55.0812295 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering M. R. Burton 1 C. Lei 2 P. A. Staniec 3 N. J. Terrill 4 A. M. Squires 5 N. M. White 6 Iris S. Nandhakumar 7 Matthew Burton 0000-0002-0376-6322 8 0050237-13052019110429.pdf burton2017.pdf 2019-05-13T11:04:29.6870000 Output 2637871 application/pdf Version of Record true 2019-05-13T00:00:00.0000000 Distributed under the terms of a Creative Commons Attribution (CC-BY-4.0) true eng
title 3D semiconducting nanostructures via inverse lipid cubic phases
spellingShingle 3D semiconducting nanostructures via inverse lipid cubic phases
Matthew Burton
title_short 3D semiconducting nanostructures via inverse lipid cubic phases
title_full 3D semiconducting nanostructures via inverse lipid cubic phases
title_fullStr 3D semiconducting nanostructures via inverse lipid cubic phases
title_full_unstemmed 3D semiconducting nanostructures via inverse lipid cubic phases
title_sort 3D semiconducting nanostructures via inverse lipid cubic phases
author_id_str_mv 2deade2806e39b1f749e9cf67ac640b2
author_id_fullname_str_mv 2deade2806e39b1f749e9cf67ac640b2_***_Matthew Burton
author Matthew Burton
author2 M. R. Burton
C. Lei
P. A. Staniec
N. J. Terrill
A. M. Squires
N. M. White
Iris S. Nandhakumar
Matthew Burton
format Journal article
container_title Scientific Reports
container_volume 7
container_issue 1
publishDate 2017
institution Swansea University
issn 2045-2322
doi_str_mv 10.1038/s41598-017-06895-5
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics.
published_date 2017-12-31T19:43:42Z
_version_ 1821345287941128192
score 11.04748