No Cover Image

Journal article 772 views 111 downloads

3D semiconducting nanostructures via inverse lipid cubic phases

M. R. Burton, C. Lei, P. A. Staniec, N. J. Terrill, A. M. Squires, N. M. White, Iris S. Nandhakumar, Matthew Burton Orcid Logo

Scientific Reports, Volume: 7, Issue: 1

Swansea University Author: Matthew Burton Orcid Logo

  • burton2017.pdf

    PDF | Version of Record

    Distributed under the terms of a Creative Commons Attribution (CC-BY-4.0)

    Download (2.46MB)

Abstract

Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for...

Full description

Published in: Scientific Reports
ISSN: 2045-2322
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50237
Abstract: Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics.
College: Faculty of Science and Engineering
Issue: 1