Journal article 959 views 241 downloads
Developing an Enzyme-Assisted Derivatization Method for Analysis of C27 Bile Alcohols and Acids by Electrospray Ionization-Mass Spectrometry
Molecules, Volume: 24, Issue: 3, Start page: 597
Swansea University Authors: Eylan Yutuc , William Griffiths
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution License (CC-BY).
Download (5.49MB) -
DOI (Published version): 10.3390/molecules24030597
Abstract
Enzyme-assisted derivatization for sterol analysis (EADSA) is a technology designed to enhance sensitivity and specificity for sterol analysis using electrospray ionization–mass spectrometry. To date it has only been exploited on sterols with a 3β-hydroxy-5-ene or 3β-hydroxy-5α-hydrogen structure, u...
Published in: | Molecules |
---|---|
ISSN: | 1420-3049 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa48910 |
Abstract: |
Enzyme-assisted derivatization for sterol analysis (EADSA) is a technology designed to enhance sensitivity and specificity for sterol analysis using electrospray ionization–mass spectrometry. To date it has only been exploited on sterols with a 3β-hydroxy-5-ene or 3β-hydroxy-5α-hydrogen structure, using bacterial cholesterol oxidase enzyme to convert the 3β-hydroxy group to a 3-oxo group for subsequent derivatization with the positively charged Girard hydrazine reagents, or on substrates with a native oxo group. Here we describe an extension of the technology by substituting 3α-hydroxysteroid dehydrogenase (3α-HSD) for cholesterol oxidase, making the method applicable to sterols with a 3α-hydroxy-5β-hydrogen structure. The 3α-HSD enzyme works efficiently on bile alcohols and bile acids with this stereochemistry. However, as found by others, derivatization of the resultant 3-oxo group with a hydrazine reagent does not go to completion in the absence of a conjugating double bond in the sterol structure. Nevertheless, Girard P derivatives of bile alcohols and C27 acids give an intense molecular ion ([M]+) upon electrospray ionization and informative fragmentation spectra. The method shows promise for analysis of bile alcohols and 3α-hydroxy-5β-C27-acids, enhancing the range of sterols that can be analyzed at high sensitivity in sterolomic studies. |
---|---|
Issue: |
3 |
Start Page: |
597 |