No Cover Image

Journal article 841 views 284 downloads

Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations

Bo Wu, Jiang-lun Wu Orcid Logo

Statistics & Probability Letters, Volume: 133, Pages: 71 - 79

Swansea University Author: Jiang-lun Wu Orcid Logo

Abstract

In this paper, we derive a characterisation theorem for the path-independent property of the density of the Girsanov transformation for degenerated stochastic differ- ential equations (SDEs), extending the characterisation theorem of [13] for the non- degenerated SDEs. We further extends our conside...

Full description

Published in: Statistics & Probability Letters
ISSN: 01677152
Published: Elsevier 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa36008
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-10-11T13:17:30Z
last_indexed 2018-05-09T19:26:13Z
id cronfa36008
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-05-09T16:39:53.2113742</datestamp><bib-version>v2</bib-version><id>36008</id><entry>2017-10-11</entry><title>Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><ORCID>0000-0003-4568-7013</ORCID><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-10-11</date><deptcode>SMA</deptcode><abstract>In this paper, we derive a characterisation theorem for the path-independent property of the density of the Girsanov transformation for degenerated stochastic differ- ential equations (SDEs), extending the characterisation theorem of [13] for the non- degenerated SDEs. We further extends our consideration to non-Lipschitz SDEs with jumps and with degenerated diffusion coefficients, which generalises the corresponding characterisation theorem established in [10].</abstract><type>Journal Article</type><journal>Statistics &amp; Probability Letters</journal><volume>133</volume><paginationStart>71</paginationStart><paginationEnd>79</paginationEnd><publisher>Elsevier</publisher><issnPrint>01677152</issnPrint><keywords>degenerated stochastic differential equations (SDEs), Girsanov transformation, non- Lipschnitz SDEs with jumps, semi-linear partial integro-differential equation of parabolic type.</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-02-01</publishedDate><doi>10.1016/j.spl.2017.10.005</doi><url>https://www.sciencedirect.com/science/article/pii/S016771521730319X</url><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-05-09T16:39:53.2113742</lastEdited><Created>2017-10-11T11:08:17.0108925</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Bo</firstname><surname>Wu</surname><order>1</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><orcid>0000-0003-4568-7013</orcid><order>2</order></author></authors><documents><document><filename>0036008-11102017120143.pdf</filename><originalFilename>Degeneratediffusion(2017-3-15).pdf</originalFilename><uploaded>2017-10-11T12:01:43.6870000</uploaded><type>Output</type><contentLength>262757</contentLength><contentType>application/pdf</contentType><version>Author's Original</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-10-11T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document><document><filename>0036008-23102017095830.pdf</filename><originalFilename>SPL2017BWuJLWu.pdf</originalFilename><uploaded>2017-10-23T09:58:30.2070000</uploaded><type>Output</type><contentLength>452416</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-10-20T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-05-09T16:39:53.2113742 v2 36008 2017-10-11 Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations dbd67e30d59b0f32592b15b5705af885 0000-0003-4568-7013 Jiang-lun Wu Jiang-lun Wu true false 2017-10-11 SMA In this paper, we derive a characterisation theorem for the path-independent property of the density of the Girsanov transformation for degenerated stochastic differ- ential equations (SDEs), extending the characterisation theorem of [13] for the non- degenerated SDEs. We further extends our consideration to non-Lipschitz SDEs with jumps and with degenerated diffusion coefficients, which generalises the corresponding characterisation theorem established in [10]. Journal Article Statistics & Probability Letters 133 71 79 Elsevier 01677152 degenerated stochastic differential equations (SDEs), Girsanov transformation, non- Lipschnitz SDEs with jumps, semi-linear partial integro-differential equation of parabolic type. 1 2 2018 2018-02-01 10.1016/j.spl.2017.10.005 https://www.sciencedirect.com/science/article/pii/S016771521730319X COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2018-05-09T16:39:53.2113742 2017-10-11T11:08:17.0108925 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Bo Wu 1 Jiang-lun Wu 0000-0003-4568-7013 2 0036008-11102017120143.pdf Degeneratediffusion(2017-3-15).pdf 2017-10-11T12:01:43.6870000 Output 262757 application/pdf Author's Original true 2017-10-11T00:00:00.0000000 true eng 0036008-23102017095830.pdf SPL2017BWuJLWu.pdf 2017-10-23T09:58:30.2070000 Output 452416 application/pdf Accepted Manuscript true 2018-10-20T00:00:00.0000000 true eng
title Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations
spellingShingle Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations
Jiang-lun Wu
title_short Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations
title_full Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations
title_fullStr Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations
title_full_unstemmed Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations
title_sort Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations
author_id_str_mv dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Jiang-lun Wu
author2 Bo Wu
Jiang-lun Wu
format Journal article
container_title Statistics & Probability Letters
container_volume 133
container_start_page 71
publishDate 2018
institution Swansea University
issn 01677152
doi_str_mv 10.1016/j.spl.2017.10.005
publisher Elsevier
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url https://www.sciencedirect.com/science/article/pii/S016771521730319X
document_store_str 1
active_str 0
description In this paper, we derive a characterisation theorem for the path-independent property of the density of the Girsanov transformation for degenerated stochastic differ- ential equations (SDEs), extending the characterisation theorem of [13] for the non- degenerated SDEs. We further extends our consideration to non-Lipschitz SDEs with jumps and with degenerated diffusion coefficients, which generalises the corresponding characterisation theorem established in [10].
published_date 2018-02-01T03:44:58Z
_version_ 1763752120712953856
score 11.037056