Journal article 842 views 284 downloads
Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations
Bo Wu,
Jiang-lun Wu
Statistics & Probability Letters, Volume: 133, Pages: 71 - 79
Swansea University Author: Jiang-lun Wu
-
PDF | Author's Original
Download (304.28KB) -
PDF | Accepted Manuscript
Download (462.43KB)
DOI (Published version): 10.1016/j.spl.2017.10.005
Abstract
In this paper, we derive a characterisation theorem for the path-independent property of the density of the Girsanov transformation for degenerated stochastic differ- ential equations (SDEs), extending the characterisation theorem of [13] for the non- degenerated SDEs. We further extends our conside...
Published in: | Statistics & Probability Letters |
---|---|
ISSN: | 01677152 |
Published: |
Elsevier
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa36008 |
first_indexed |
2017-10-11T13:17:30Z |
---|---|
last_indexed |
2018-05-09T19:26:13Z |
id |
cronfa36008 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-05-09T16:39:53.2113742</datestamp><bib-version>v2</bib-version><id>36008</id><entry>2017-10-11</entry><title>Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-10-11</date><abstract>In this paper, we derive a characterisation theorem for the path-independent property of the density of the Girsanov transformation for degenerated stochastic differ- ential equations (SDEs), extending the characterisation theorem of [13] for the non- degenerated SDEs. We further extends our consideration to non-Lipschitz SDEs with jumps and with degenerated diffusion coefficients, which generalises the corresponding characterisation theorem established in [10].</abstract><type>Journal Article</type><journal>Statistics & Probability Letters</journal><volume>133</volume><paginationStart>71</paginationStart><paginationEnd>79</paginationEnd><publisher>Elsevier</publisher><issnPrint>01677152</issnPrint><keywords>degenerated stochastic differential equations (SDEs), Girsanov transformation, non- Lipschnitz SDEs with jumps, semi-linear partial integro-differential equation of parabolic type.</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-02-01</publishedDate><doi>10.1016/j.spl.2017.10.005</doi><url>https://www.sciencedirect.com/science/article/pii/S016771521730319X</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-05-09T16:39:53.2113742</lastEdited><Created>2017-10-11T11:08:17.0108925</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Bo</firstname><surname>Wu</surname><order>1</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>2</order></author></authors><documents><document><filename>0036008-11102017120143.pdf</filename><originalFilename>Degeneratediffusion(2017-3-15).pdf</originalFilename><uploaded>2017-10-11T12:01:43.6870000</uploaded><type>Output</type><contentLength>262757</contentLength><contentType>application/pdf</contentType><version>Author's Original</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-10-11T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document><document><filename>0036008-23102017095830.pdf</filename><originalFilename>SPL2017BWuJLWu.pdf</originalFilename><uploaded>2017-10-23T09:58:30.2070000</uploaded><type>Output</type><contentLength>452416</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-10-20T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-05-09T16:39:53.2113742 v2 36008 2017-10-11 Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2017-10-11 In this paper, we derive a characterisation theorem for the path-independent property of the density of the Girsanov transformation for degenerated stochastic differ- ential equations (SDEs), extending the characterisation theorem of [13] for the non- degenerated SDEs. We further extends our consideration to non-Lipschitz SDEs with jumps and with degenerated diffusion coefficients, which generalises the corresponding characterisation theorem established in [10]. Journal Article Statistics & Probability Letters 133 71 79 Elsevier 01677152 degenerated stochastic differential equations (SDEs), Girsanov transformation, non- Lipschnitz SDEs with jumps, semi-linear partial integro-differential equation of parabolic type. 1 2 2018 2018-02-01 10.1016/j.spl.2017.10.005 https://www.sciencedirect.com/science/article/pii/S016771521730319X COLLEGE NANME COLLEGE CODE Swansea University 2018-05-09T16:39:53.2113742 2017-10-11T11:08:17.0108925 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Bo Wu 1 Jiang-lun Wu 2 0036008-11102017120143.pdf Degeneratediffusion(2017-3-15).pdf 2017-10-11T12:01:43.6870000 Output 262757 application/pdf Author's Original true 2017-10-11T00:00:00.0000000 true eng 0036008-23102017095830.pdf SPL2017BWuJLWu.pdf 2017-10-23T09:58:30.2070000 Output 452416 application/pdf Accepted Manuscript true 2018-10-20T00:00:00.0000000 true eng |
title |
Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations |
spellingShingle |
Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations Jiang-lun Wu |
title_short |
Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations |
title_full |
Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations |
title_fullStr |
Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations |
title_full_unstemmed |
Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations |
title_sort |
Characterising the path-independent property of the Girsanov density for degenerated stochastic differential equations |
author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Jiang-lun Wu |
author2 |
Bo Wu Jiang-lun Wu |
format |
Journal article |
container_title |
Statistics & Probability Letters |
container_volume |
133 |
container_start_page |
71 |
publishDate |
2018 |
institution |
Swansea University |
issn |
01677152 |
doi_str_mv |
10.1016/j.spl.2017.10.005 |
publisher |
Elsevier |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
https://www.sciencedirect.com/science/article/pii/S016771521730319X |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we derive a characterisation theorem for the path-independent property of the density of the Girsanov transformation for degenerated stochastic differ- ential equations (SDEs), extending the characterisation theorem of [13] for the non- degenerated SDEs. We further extends our consideration to non-Lipschitz SDEs with jumps and with degenerated diffusion coefficients, which generalises the corresponding characterisation theorem established in [10]. |
published_date |
2018-02-01T04:18:01Z |
_version_ |
1821377645986709504 |
score |
11.04748 |