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Abstract. In this paper, we derive a characterisation theorem for the path-independent
property of the density of the Girsanov transformation for degenerated stochastic differ-
ential equations (SDEs), extending the characterisation theorem of [13] for the non-
degenerated SDEs. We further extends our consideration to non-Lipschitz SDEs with
jumps and with degenerated diffusion coefficients, which generalises the corresponding
characterisation theorem established in [10].

1. Introduction

Let (Ω,F ,P, {Ft}t>0) be a filtered probability space. Let d,m ∈ N be fixed. We are
concerned with the following SDE

dXt = b(t, Xt)dt + σ(t, Xt)dWt, t ≥ 0 (1)

where

b : [0,∞)× Rd → Rd, σ : [0,∞)× Rd → Rd⊗m

(Wt)t>0 is an m-dimensional {Ft}t>0-Brownian motion. Under standard usual conditions,
e.g. the two coefficients b and σ satisfy linear growth and local Lipschitz conditions (for
the second variable), there is a unique solution to the above SDE (1) for a given initial
data X0, see, e.g., [3].

The celebrated Girsanov theorem provides a very powerful tool to solve SDEs under
the name of the Girsanov transformation or the transformation of the drift. We use
| · | and 〈·, ·〉 to denote the Euclidean norm and scalar product of vectors in Rm or Rd,
respectively. Let γ : [0,∞)× Rd → Rm be a measurable function such that the following
exponential integrability along the paths of the solution (Xt)t>0 holds (also known as
Novikov condition)

E
(
exp

{
−
∫ t

0

|γ(s,Xs)|2ds +
∫ t

0

〈γ(s,Xs), dWs〉
})

< ∞, t > 0. (2)

AMS Subject Classification(2010): 60H10; 35Q53.
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Then, Girsanov theorem ([2, 3, 4]) says that for any arbitrarily fixed T > 0

W̃t := Wt −
∫ t

0

γ(s,Xs)ds, t ∈ [0, T ] (3)

is an m-dimensional {Ft}t∈[0,T ]-Brownian motion under the probability measure

QT := exp

{
−
∫ T

0

|γ(s,Xs)|2ds+
∫ T

0

〈γ(s,Xs), dWs〉
}
· P. (4)

Moreover, the solution (Xt)t∈[0,T ] fulfils the following SDE

dXt = [b(t, Xt) + σ(t, Xt)γ(t, Xt)]dt + σ(t, Xt)dW̃t, t ∈ [0, T ]. (5)

Now let us assume that (along the paths of the solution (Xt)t>0)

b(t, Xt)− σ(t, Xt)γ(t, Xt) = 0, a.s. ∀ t > 0. (6)

Equivalently, b ∈ Im(σ), where Im(σ) is the imagine space of σ. Then

dXt = σ(t, Xt)dW̃t. (7)

We are interested in the path-independent property for the exponent of the Girsanov
density of QT for any fixed T > 0. That is, whether there exists a scalar function
v : [0,∞)× Rd → R such that

Zt :=
1

2

∫ t

0

|γ(s,Xs)|2ds+
∫ t

0

〈γ(s,Xs), dWs〉 = v(t, Xt)− v(0, X0), t ≥ 0. (8)

This problem arises from a number of studies in economics, finance as well as from sto-
chastic mechanics, just mention a few, see [13, 15] (and references therein).

If σ : [0,∞)×Rd → Rd⊗d (i.e., takingm = d) is non-degenerate, that is, the d×d-matrix
σ(t, x) is invertible for any (t, x) ∈ [0,∞)×Rd, a characterisation of the path-independent
property has obtained in [13].

Throughout the article, we assume that σ, b satisfy the Hörmander’s condition, i.e. if
the associated Lie algebra spans, in any point, the whole Rd. In particular, we allow σ be
degenerate.

Let Λt := {(t, Xt) ∈ [0,∞) × Rd : t > 0, ω ∈ Ω} ⊂ [0,∞) × Rd, the support of the
solution. In particular, for each t > 0, we have Λt = [0,∞) × Rd if b(t, x) and σ(t, x)
satisfy the Hörmander’s conditions. Then by using Itô’s formula to v(t, Xt) viewing as
the composition of v : [0,∞)×Rd → R with the semimartingale (Xt)t>0, the utilising the
uniqueness of Doob-Meyer decomposition for continuous semimartingales, we can derive
for any t > 0 the following

γ(t, Xt) = σ∗(t, Xt)∇v(t, Xt) (9)

and

1

2
|γ(t, Xt)|2 =

∂v

∂t
(t, Xt) + 〈∇v(t, Xt), b(t, Xt)〉+

1

2
Tr[(σσ∗(t, Xt)∇2v(t, Xt))] (10)

where σ∗(t, x) stands for the transposed matrix of σ(t, x), ∇ and ∇2 stand for the gradient
and Hessian operators with respect to the second variable, respectively. Moreover, we get

{
γ(t, x) = σ∗(t, x)∇v(t, x) (I)
1
2
|γ(t, x)|2 = ∂v

∂t
(t, x) + 〈∇v(t, x), b(t, x)〉+ 1

2
Tr[(σσ∗(t, x)∇2v(t, x))] (II)

(11)
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for any (t, x) ∈ [0,∞) × Λ. Putting (I) into (II) and (6) yield the following nonlinear
parabolic PDE of the (reversible) HJB type

{
∂v
∂t
(t, x) = −1

2
{Tr[(σσ∗(t, x)∇2v(t, x))] + |σ∗(t, x)∇v(t, x)|2},

σ(t, x)σ∗(t, x)∇v(t, x) = b(t, x), (t, x) ∈ [0,∞)× Λ.
(12)

Remark 1.1. All above derivations are reciprocal, namely, that gives a characterisation
of path-independence property.

Theorem 1.2. Assume that γ : [0,∞)×Rd → Rd is a function satisfying (6). Then there
exists a scalar function v ∈ C1,2((0,∞)× Rd → Rd) such that

1

2

∫ t

0

|γ(s,Xs)|2ds+
∫ t

0

〈γ(s,Xs), dWs〉 = v(t, Xt)− v(0, X0) (13)

if and only if (12) holds.

Proof. By the previous argument, we only show that the sufficiency. Since

v ∈ C1,2((0,∞)× Rd → Rd),

we know that v(t, Xt) is a continuous semimartinagle of Xt. Thus we ahve

dv(t, Xt) =

{
∂v

∂t
(t, Xt) + 〈∇v(t, Xt), b(t, Xt)〉+

1

2
Tr[(σσ∗(t, Xt)∇2v(t, Xt))]

}
dt

+ 〈σ∗(t, Xt)∇v(t, Xt), dWt〉.
(14)

Combining this with (12), we get

dv(t, Xt)

=

{
−1

2
|σ∗(t, Xt)∇v(t, Xt)|2 + 〈∇v(t, Xt), b(t, Xt)〉

}
+ 〈σ∗(t, Xt)∇v(t, Xt), dWt〉

=
1

2
|γ(t, Xt)|2dt + 〈γ(t, Xt), dWt〉.

(15)

This implies (13). �
Corollary 1.3. Assume that γ : [0,∞) × Rd → Rd is a function satisfying (6). Then
there exist a function f ∈ C2(R → R) and a scalar function v ∈ C1,2((0,∞)× Rd → Rd)
such that

1

2

∫ t

0

|γ(s,Xs)|2ds+
∫ t

0

〈γ(s,Xs), dWs〉 = f(v(t, Xt))− f(v(0, X0)) (16)

if and only if




f ′(v)(t, x)∂v
∂t
(t, x) = −1

2

{
f ′(v)(t, x)Tr[(σσ∗(t, x)∇2v(t, x))]

+f ′′(v)(t, x)|σ∗(t, x)∇v(t, x)|2 + |f ′(v)(t, x)|2|σ∗(t, x)∇v(t, x)|2
}
,

b(t, x) = f ′(v)(t, x)σ(t, x)σ∗(t, x)∇v(t, x), (t, x) ∈ [0,∞)× Λ.

(17)

Proof. According to Theorem 1.2, we know that (16) is equivalent to
{

∂f(v)
∂t

(t, x) = −1
2
{Tr[(σσ∗(t, x)∇2f(v)(t, x))] + |σ∗(t, x)∇f(v)(t, x)|2},

σ(t, x)σ∗(t, x)∇f(v)(t, x) = b(t, x), (t, x) ∈ [0,∞)× Λ.
3



Since
Tr[(σσ∗(t, x)∇2f(v)(t, x))] = Tr[(σσ∗(t, x)∇(f ′(v)(t, x)∇v(t, x))]

= f ′(v)(t, x)Tr[(σσ∗(t, x)∇2v(t, x))] + f ′′(v)(t, x)|σ∗(t, x)∇v(t, x)|2
and

σ∗(t, x)∇f(v)(t, x) = f ′(v)σ∗(t, x)∇v(t, x).

Combining all the above equalities, we conclude that (16) is equivalent to (17).
�

Example 1.4. Under the conditions of Corollary 1.3, we have the following examples of
the function f

(a) If f(x) = x, then

1

2

∫ t

0

|γ(s,Xs)|2ds+
∫ t

0

〈γ(s,Xs), dWs〉 = v(t, Xt)− v(0, X0) (18)

if and only if
σ(t, x)σ∗(t, x)∇v(t, x) = b(t, x), (t, x) ∈ [0,∞)× Λ (19)

and v satisfies the following time-reversed KPZ type equation,

∂v

∂t
(t, x) = −1

2
{Tr[(σσ∗(t, x)∇2v(t, x))]+ |σ∗(t, x)∇v(t, x)|2}, (t, x) ∈ [0,∞)×Λ. (20)

In particular, if σ is invertible, this covers the result obtained in [13].
(b) If f(x) = log |x|, for x 6= 0, then

1

2

∫ t

0

|γ(s,Xs)|2ds+
∫ t

0

〈γ(s,Xs), dWs〉 = log
v(t, Xt)

v(0, X0)
(21)

if and only if

σ(t, x)σ∗(t, x)∇v(t, x) = v(t, x)b(t, x), (t, x) ∈ [0,∞)× Λ, (22)

and v satisfies the following time-reversed heat kernel type equation,

∂v

∂t
(t, x) = −1

2
Tr[(σσ∗(t, x)∇2v(t, x))], (t, x) ∈ [0,∞)× Λ. (23)

In particular, if σ = Id, then we have

1

2

∫ t

0

|b(s,Xs)|2ds+
∫ t

0

〈b(s,Xs), dWs〉 = log

∣∣∣∣
v(t, Xt)

v(0, X0)

∣∣∣∣ (24)

if and only if
∇v(t, x) = v(t, x)b(t, x), (t, x) ∈ [0,∞)× Rd, (25)

and v satisfies the standard heat kernel equation,

∂v

∂t
(t, x) = −1

2
∆v(t, x), (t, x) ∈ [0,∞)× Rd. (26)

(c) If f(x) = x2k+1, k ∈ N ∪ {0}, or f(x) = x2k+1, k ∈ Z for x 6= 0, then

1

2

∫ t

0

|γ(s,Xs)|2ds +
∫ t

0

〈γ(s,Xs), dWs〉 = v2k+1(t, Xt)− v2k+1(0, X0) (27)

if and only if

(2k + 1)v2k(t, x)σ(t, x)σ∗(t, x)∇v(t, x) = b(t, x), (t, x) ∈ [0,∞)× Λ, (28)
4



and v satisfies the following time-reversed HJB equation,

∂v

∂t
(t, x) = −1

2

{
Tr[(σσ∗(t, x)∇2v(t, x))]

+
(2k + 1)v2k+1(t, x) + 2k

v(t, x)
|σ∗(t, x)∇v(t, x)|2

}
.

(29)

(d) If f(x) = tan(x), x ∈ (−π
2
, π
2
), then

1

2

∫ t

0

|γ(s,Xs)|2ds+
∫ t

0

〈γ(s,Xs), dWs〉 = tan(v(t, Xt))− tan(v(0, X0)) (30)

if and only if

σ(t, x)σ∗(t, x)∇v(t, x) = cos2(v(t, x))b(t, x), (t, x) ∈ [0,∞)× Λ, (31)

and v satisfies the following time-reversed HJB equation,

∂v

∂t
(t, x) = −1

2

{
Tr[(σσ∗(t, x)∇2v(t, x))]

+
[cos(v(t, x)) + sin(v(t, x))]2

cos2(v(t, x))
|σ∗(t, x)∇v(t, x)|2

}
.

(32)

Proof. It is obvious for (a). We only prove (b)((c) may be similarly handed). By Corollary
1.3, we know that (21) is equivalent to





1
v(t,x)

∂v
∂t
(t, x) = −1

2

{
1

v(t,x)
Tr[(σσ∗(t, x)∇2v(t, x))]

− 1
v2(t,x)

|σ∗(t, x)∇v(t, x)|2 + 1
vv(t,x)

|σ∗(t, x)∇v(t, x)|2
}

σ(t, x)σ∗(t, x)∇v(t, x) = v(t, x)b(t, x), (t, x) ∈ [0,∞)× Λ

(33)

which are just (22) and (23), respectively. �
Example 1.5. [Gruschin operator] Let b(t, z) = (−xt,−xkyt)T , z = (x, y) ∈ R2, t > 0
and σ(t, z) be given by

σ(t, z) =

(
1 0
0 xk

)
, k ∈ N, z = (x, y) ∈ R2, t > 0. (34)

Then b ∈ Im(σ) and the Hörmander’s condition holds for H = { ∂
∂x
, xk ∂

∂y
} with commu-

tators up to order k. Define the subelliptic diffusion operator

L = X2 + Y 2 + b(t, ·).
Let γ(t, z) = (−xt,−yt)∗ and Xs be the associated L-diffusion process, then b(t, z) =
σ(t, z)γ(t, z). Assume that v ∈ C1,2((0,∞)× R2 → R2) fulfills the following

1

2

∫ t

0

|γ(s,Xs)|2ds+
∫ t

0

〈γ(s,Xs), dWs〉 = v(t, Xt)− v(0, X0). (35)

Then, by Theorem 1.2, we know that v satisfies the equation (12).

The following two examples come from [14].

Example 1.6. [Kohn operator] Consider the three-dimensional Heisenberg group real-
ized as R3 equipped with the group multiplication

(x, y, z)(x′, y′, z′) := (x+ x′, y + y′, z + z′ + (xy′ − x′y)/2),
5



which is a Lie group with left-invariant orthonormal frame {X, Y, Z}, where

X =
∂

∂x
− y

2

∂

∂z
, Y =

∂

∂y
+

x

2

∂

∂z
, Z = [X, Y ] =

∂

∂z

Then the Kohn-Laplacian is ∆H := X2 + Y 2. Let

b(t, u) = (xt, yt,
z(x− y)

2
t), u = (x, y, z) ∈ R3, t > 0

and σ(t, z) be given by

σ(t, u) =




1 0 0
0 1 0
−y

2
x
2

0


 , u = (x, y, z) ∈ R3, t > 0. (36)

Define the subelliptic diffusion operator

L = X2 + Y 2 + b(t, ·).
Let γ(t, z) = (xt, yt, zt)∗ and Xs be the associated L-diffusion process, then b ∈ Im(σ)
and b(t, z) = σ(t, z)γ(t, z). Then, the Hörmander’s condition holds for H = { ∂

∂x
, xk ∂

∂y
}

with commutators up to order k. Assume that v ∈ C1,2((0,∞) × R2 → R2) fulfills the
following

1

2

∫ t

0

|γ(s,Xs)|2ds+
∫ t

0

〈γ(s,Xs), dWs〉 = v(t, Xt)− v(0, X0) (37)

Then, by theorem 1.2, we know that v satisfies the equation (12).

2. Non-Lipschitz SDEs with jumps

2.1. The characterisation theorem for SDEs with continuous diffusions on Rd.
Let (U, ‖ · ‖U) be a finite dimensional normed space endowed with its Borel σ-algebra
U . Let ν be a σ-finite measure defined on (U,U ). Let us fix U0 ∈ U with ν(U \
U0) < ∞ and

∫
U0

‖u‖2U ν(du) < ∞. Furthermore, let λ : [0,∞) × U → (0, 1] be a given

measurable function. Then, following e.g. [3, 4], there exists a non-negative integer
valued (Ft)t>0-Poisson random measure Nλ(dt, du) on the given filtered probability space
(Ω,F ,P; (Ft)t>0) with intensity E(Nλ(dt, du)) = λ(t, u)dtν(du). Set

Ñλ(dt, du) := Nλ(dt, du)− λ(t, u)dtν(du)

that is, Ñλ(dt, du) stands for the compensated (Ft)t>0-predictable martingale measure of
Nλ(dt, du).

We are concerned with the following SDE on Rd

{
dXt = b(t, Xt)dt+ σ(t, Xt)dBt +

∫
U0

f(t, Xt−, u)Ñλ(dt, du), t ∈ (0, T ],

X0 = x0 ∈ Rd,
(38)

for any given T > 0, where b, σ are Borel measurable as given in the previous section,
(Bt)t>0 is an m-dimensional {Ft}t>0-Brownian motion, f : [0, T ] × Rd × U0 7→ Rd is
Borel measurable, and Ñλ is the compensated (Ft)t>0-predictable martingale measure of
an induced {Ft}t>0-Poisson random measure given above which is independent of (Bt)t>0.
This equation arises in nonlinear filtering and has been considered recently in [11, 8, 9]
(see also the monograph [12]).
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The characterisation theorem for path-independent property of Girsanov density for
the above equation with non-degenerated σ was established in [10]. More precisely, under
the following conditions

(H1) There exists λ0 ∈ R such that for all x, y ∈ Rd and t ∈ [0, T ]

2〈x− y, b(t, x)− b(t, y)〉+ ‖σ(t, x)− σ(t, y)‖2 6 λ0|x− y|2κ(|x− y|),
where κ is a positive continuous function, bounded on [1,∞) and satisfying

lim
x↓0

κ(x)

log x−1
= δ < ∞.

(H2) There exists λ1 > 0 such that for all x ∈ Rd and t ∈ [0, T ]

|b(t, x)|2 + ‖σ(t, x)‖2 6 λ1(1 + |x|)2.
(H3) b(t, x) is continuous in x and there exists λ2 > 0 such that

〈σ(t, x)h, h〉 >
√
λ2|h|2, t ∈ [0, T ], x, h ∈ Rd. (39)

(Hf) For all x, y ∈ Rd and t ∈ [0, T ],
∫

U0

∣∣f(t, x, u)− f(t, y, u)
∣∣2ν(du) 6 2|λ0||x− y|2κ(|x− y|)

and for q = 2 and 4 ∫

U0

|f(t, x, u)|q ν(du) 6 λ1(1 + |x|)q.

Qiao and Wu in [10] proved a characterisation theorem, where a partial integer-differential
equation (PIDE) as the main characterizing equation was derived. We notice that the
assumption (H3) on the diffusion coefficient σ is too strong. Here we aim to relax this
condition. First of all, we let σ to be d×m-matrix-valued for d,m ∈ N, i.e., σ is in general
not square matrix-valued. And σ, b satisfy the Hörmander’s condition.

Let γ : [0,∞)× Rd → Rm be a measurable function such that the following condition
(Hγ,λ) holds

E
[
exp

{1

2

∫ T

0

|γ(s,Xs)|2 ds+
∫ T

0

∫

U0

(
1− λ(s, u)

λ(s, u)

)2

λ(s, u)ν(du)ds
}]

< ∞.

Set

Γt : = exp

{
−

∫ t

0

〈γ(s,Xs), dBs〉 −
1

2

∫ t

0

|γ(s,Xs)|2 ds

−
∫ t

0

∫

U0

log λ(s, u)Nλ(ds, du)−
∫ t

0

∫

U0

(1− λ(s, u))ν(du)ds

}
,

Mt : = −
∫ t

0

〈γ(s,Xs), dBs〉+
∫ t

0

∫

U0

1− λ(s, u)

λ(s, u)
Ñλ(ds, du),

and then (Γt) is the Doléans-Dade exponential of (Mt), see e.g., [2].
Under (H1), (H2) and (Hf), it is well known that there exists a unique strong solution

to Eq.(38) (cf. [12, Theorem 170, p.140]). This solution will be denoted by Xt. In the
following, we define the support of a random vector ([6]) and then present a result about
the support of Xt under the above assumptions.
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Definition 2.1. The support of a random vector Y is defined as

supp(Y ) := {x ∈ Rd|(P ◦ Y −1)(B(x, r)) > 0, for all r > 0}
where B(x, r) := {y ∈ Rd||y − x| < r}, the open ball centered at x with radius r.

Under (Hγ,λ), (Mt) is a locally square integrable martingale. Moreover, Mt−Mt− > −1
a.s. and

E
[
exp

{1

2
< M c,M c >T + < Md,Md >T

}]

= E
[
exp

{1

2

∫ T

0

|γ(s,Xs)|2 ds+
∫ T

0

∫

U0

(
1− λ(s, u)

λ(s, u)

)2

λ(s, u)ν(du)ds
}]

< ∞,

where M c and Md are continuous and purely discontinuous martingale parts of (Mt),
respectively. Thus, it follows from [7, Theorem 6] that (Λt) is an exponential martingale.

Define a measure P̃ via
dP̃
dP

= ΛT .

By the Girsanov theorem for Brownian motions and random measures, one can obtain
that under the measure P̃ the system (38) is transformed into the following

dXt = [b(t, Xt) + σ(t, Xt)γ(t, Xt)]dt+ σ(t, Xt)dB̃t +

∫

U0

f(t, Xt−, u)Ñ(dt, du),

Now let us assume that (along th paths of (Xt)t>0)

b(t, Xt) + σ(t, Xt)γ(t, Xt) = 0.

Then we get

dXt = σ(t, Xt)dB̃t +

∫

U0

f(t, Xt−, u)Ñ(dt, du),

where

B̃t := Bt +

∫ t

0

γ(s,Xs)ds, Ñ(dt, du) := Nλ(dt, du)− dtν(du).

Next, we set

Yt := − log Γt =

∫ t

0

〈γ(s,Xs), dBs〉+
1

2

∫ t

0

|γ(s,Xs)|2 ds

+

∫ t

0

∫

U0

log λ(s, u)Nλ(ds, du) +

∫ t

0

∫

U0

(1− λ(s, u))ν(du)ds.

Clearly, (Yt) is a one-dimensional stochastic process with the following stochastic differ-
ential form

dYt = 〈γ(t, Xt), dBt〉+
1

2
|γ(t, Xt)|2 dt

+

∫

U0

log λ(t, u)Nλ(dt, du) +

∫

U0

(1− λ(t, u))ν(du)dt.

Let Λ := supp((t, Xt), t > 0). Then we have the following.
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Theorem 2.2. Let v : [0, T ]× Rd → R be a scalar function which is C1 with respect to
the first variable and C2 with respect to the second variable. Then

v(t, Xt) = v(0, x0) +

∫ t

0

〈γ(s,Xs), dBs〉+
1

2

∫ t

0

|γ(s,Xs)|2 ds

+

∫ t

0

∫

U0

log λ(s, u)Nλ(ds, du) +

∫ t

0

∫

U0

(1− λ(s, u))ν(du)ds, (40)

equivalently,

Yt = v(t, Xt)− v(0, x0), t ∈ [0, T ]

holds if and only if

b(t, x) = (σσ∗∇v)(t, x), (t, x) ∈ Λ, (41)

λ(t, u) = exp{v(t, x+ f(t, x, u))− v(t, x)}, (t, x, u) ∈ Λ× U0, (42)

and v satisfies the following time-reversed partial integro-differential equation (PIDE),

∂

∂t
v(t, x) = −1

2
[Tr(σσ∗)∇2v](t, x)− 1

2
|σ∗∇v|2(t, x)−

∫

U0

[
ev(t,x+f(t,x,u))−v(t,x) − 1

−〈f(t, x, u),∇v(t, x)〉ev(t,x+f(t,x,u))−v(t,x)
]
ν(du). (43)

Proof. Following the line of [8]. To the reader’s convenience, we give the detailed proof
here. The proof of necessity. By (40),

dv(t, Xt) =

[
1

2
|γ(t, Xt)|2 +

∫

U0

(
λ(t, u) logλ(t, u) +

(
1− λ(t, u)

))
ν(du)

]
dt

+

∫

U0

log λ(t, u)Ñλ(dt, du) + 〈γ(t, Xt), dBt〉. (44)

It is clear from (44) that v(t, Xt) is a càdlàg semimartingale with a predictable finite
variation part. On the other hand, note that Xt satisfies Equation (38) and v(t, x) is a
C1,2-function, by applying the Itô formula to the composition process v(t, Xt), one could
obtain the following

dv(t, Xt) =
∂

∂t
v(t, Xt)dt+ 〈b,∇v〉(t, Xt)dt +

1

2
[Tr(σσ∗)∇2v](t, Xt)dt

+

∫

U0

[
v(t, Xt− + f(t, Xt−, u))− v(t, Xt−)

−〈f(t, Xt−, u),∇v(t, Xt−)〉
]
λ(t, u)ν(du)dt

+

∫

U0

[v(t, Xt− + f(t, Xt−, u))− v(t, Xt−)] Ñλ(dt, du)

+〈(σ∗∇v)(t, Xt), dBt〉. (45)

Thus, (45) is another decomposition of the semimartingale v(t, Xt). By uniqueness for
decomposition of the semimartingale, it holds that for t ∈ [0, T ],

γ(t, Xt) = (σ∗∇v)(t, Xt),

log λ(t, u) = v(t, Xt− + f(t, Xt−, u))− v(t, Xt−), u ∈ U0,
9



and

1

2
|γ(t, Xt)|2 +

∫

U0

(
λ(t, u) log λ(t, u) +

(
1− λ(t, u)

))
ν(du)

=
∂

∂t
v(t, Xt) + 〈b,∇v〉(t, Xt) +

1

2
[Tr(σσ∗)∇2v](t, Xt)

+

∫

U0

[
v(t, Xt− + f(t, Xt−, u))− v(t, Xt−)

−〈f(t, Xt−, u),∇v(t, Xt−)〉
]
λ(t, u)ν(du), a.s..

Note that (t, Xt) runs through Λ, thus, we have that

γ(t, x) = (σ∗∇v)(t, x), (t, x) ∈ Λ, (46)

log λ(t, u) = v(t, x+ f(t, x, u))− v(t, x), (t, x, u) ∈ Λ× U0, (47)

and

1

2
|γ(t, x)|2 +

∫

U0

(
λ(t, u) logλ(t, u) +

(
1− λ(t, u)

))
ν(du)

=
∂

∂t
v(t, x) + 〈b,∇v〉(t, x) + 1

2
[Tr(σσ∗)∇2v](t, x)

+

∫

U0

[
v(t, x+ f(t, x, u))− v(t, x)

−〈f(t, x, u),∇v(t, x)〉
]
λ(t, u)ν(du). (48)

It is easy to see that (46) and (47) correspond to (41) and (42), respectively, which
together with (48) further yields the PIDE (43).

Next, let us show sufficiency. Assume that there exists a C1,2-function v(t, x) satisfying
(41), (42) and (43). For the composition process v(t, Xt), the Itô formula admits us to
get (45). Combining (41), (42) and (43) with (45), we have

dv(t, Xt) =

[
1

2
|γ(t, Xt)|2 +

∫

U0

((
λ(t, u) logλ(t, u)

)
λ(t, u) +

(
1− λ(t, u)

))
ν(du)

]
dt

+

∫

U0

log λ(t, u)Ñλ(dt, du) + 〈σ−1(t, Xt)b(t, Xt), dBt〉

= 〈γ, dBt〉+
1

2

∣∣σ−1(t, Xt)b(t, Xt)
∣∣2 dt

+

∫

U0

log λ(t, u)Nλ(dt, du) +

∫

U0

(1− λ(t, u))ν(du)dt.

The proof is completed. �
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