Journal article 1837 views 564 downloads
In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning
Materials Science and Engineering: C, Volume: 70, Pages: 512 - 519
Swansea University Authors: Daniel Curtis , Rhodri Williams , Karl Hawkins , Thierry Maffeis , Christopher Wright
-
PDF | Accepted Manuscript
Download (1.86MB)
DOI (Published version): 10.1016/j.msec.2016.09.014
Abstract
We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle...
Published in: | Materials Science and Engineering: C |
---|---|
ISSN: | 0928-4931 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa29839 |
first_indexed |
2016-09-08T19:08:44Z |
---|---|
last_indexed |
2018-02-09T05:15:16Z |
id |
cronfa29839 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2017-05-17T17:22:42.9597488</datestamp><bib-version>v2</bib-version><id>29839</id><entry>2016-09-08</entry><title>In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning</title><swanseaauthors><author><sid>e76ff28a23af2fe37099c4e9a24c1e58</sid><ORCID>0000-0002-6955-0524</ORCID><firstname>Daniel</firstname><surname>Curtis</surname><name>Daniel Curtis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>642bf793695f412ed932f1ea4d9bc3f1</sid><ORCID>0000-0002-6912-5288</ORCID><firstname>Rhodri</firstname><surname>Williams</surname><name>Rhodri Williams</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>77c39404a9a98c6e2283d84815cba053</sid><ORCID>0000-0003-0174-4151</ORCID><firstname>Karl</firstname><surname>Hawkins</surname><name>Karl Hawkins</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>992eb4cb18b61c0cd3da6e0215ac787c</sid><ORCID>0000-0003-2357-0092</ORCID><firstname>Thierry</firstname><surname>Maffeis</surname><name>Thierry Maffeis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>235e125ac3463e2ee7fc98604bf879ce</sid><ORCID>0000-0003-2375-8159</ORCID><firstname>Christopher</firstname><surname>Wright</surname><name>Christopher Wright</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-09-08</date><deptcode>EAAS</deptcode><abstract>We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique.</abstract><type>Journal Article</type><journal>Materials Science and Engineering: C</journal><volume>70</volume><paginationStart>512</paginationStart><paginationEnd>519</paginationEnd><publisher/><issnPrint>0928-4931</issnPrint><keywords/><publishedDay>1</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-01-01</publishedDate><doi>10.1016/j.msec.2016.09.014</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-05-17T17:22:42.9597488</lastEdited><Created>2016-09-08T14:29:51.0464421</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Luke</firstname><surname>Burke</surname><order>1</order></author><author><firstname>Chris J.</firstname><surname>Mortimer</surname><order>2</order></author><author><firstname>Daniel</firstname><surname>Curtis</surname><orcid>0000-0002-6955-0524</orcid><order>3</order></author><author><firstname>Aled R.</firstname><surname>Lewis</surname><order>4</order></author><author><firstname>Rhodri</firstname><surname>Williams</surname><orcid>0000-0002-6912-5288</orcid><order>5</order></author><author><firstname>Karl</firstname><surname>Hawkins</surname><orcid>0000-0003-0174-4151</orcid><order>6</order></author><author><firstname>Thierry</firstname><surname>Maffeis</surname><orcid>0000-0003-2357-0092</orcid><order>7</order></author><author><firstname>Chris J.</firstname><surname>Wright</surname><order>8</order></author><author><firstname>Christopher</firstname><surname>Wright</surname><orcid>0000-0003-2375-8159</orcid><order>9</order></author></authors><documents><document><filename>0029839-98201623033PM.pdf</filename><originalFilename>burke2016.pdf</originalFilename><uploaded>2016-09-08T14:30:33.5570000</uploaded><type>Output</type><contentLength>1924427</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-09-07T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2017-05-17T17:22:42.9597488 v2 29839 2016-09-08 In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning e76ff28a23af2fe37099c4e9a24c1e58 0000-0002-6955-0524 Daniel Curtis Daniel Curtis true false 642bf793695f412ed932f1ea4d9bc3f1 0000-0002-6912-5288 Rhodri Williams Rhodri Williams true false 77c39404a9a98c6e2283d84815cba053 0000-0003-0174-4151 Karl Hawkins Karl Hawkins true false 992eb4cb18b61c0cd3da6e0215ac787c 0000-0003-2357-0092 Thierry Maffeis Thierry Maffeis true false 235e125ac3463e2ee7fc98604bf879ce 0000-0003-2375-8159 Christopher Wright Christopher Wright true false 2016-09-08 EAAS We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. Journal Article Materials Science and Engineering: C 70 512 519 0928-4931 1 1 2017 2017-01-01 10.1016/j.msec.2016.09.014 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2017-05-17T17:22:42.9597488 2016-09-08T14:29:51.0464421 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Luke Burke 1 Chris J. Mortimer 2 Daniel Curtis 0000-0002-6955-0524 3 Aled R. Lewis 4 Rhodri Williams 0000-0002-6912-5288 5 Karl Hawkins 0000-0003-0174-4151 6 Thierry Maffeis 0000-0003-2357-0092 7 Chris J. Wright 8 Christopher Wright 0000-0003-2375-8159 9 0029839-98201623033PM.pdf burke2016.pdf 2016-09-08T14:30:33.5570000 Output 1924427 application/pdf Accepted Manuscript true 2017-09-07T00:00:00.0000000 true |
title |
In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning |
spellingShingle |
In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning Daniel Curtis Rhodri Williams Karl Hawkins Thierry Maffeis Christopher Wright |
title_short |
In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning |
title_full |
In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning |
title_fullStr |
In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning |
title_full_unstemmed |
In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning |
title_sort |
In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning |
author_id_str_mv |
e76ff28a23af2fe37099c4e9a24c1e58 642bf793695f412ed932f1ea4d9bc3f1 77c39404a9a98c6e2283d84815cba053 992eb4cb18b61c0cd3da6e0215ac787c 235e125ac3463e2ee7fc98604bf879ce |
author_id_fullname_str_mv |
e76ff28a23af2fe37099c4e9a24c1e58_***_Daniel Curtis 642bf793695f412ed932f1ea4d9bc3f1_***_Rhodri Williams 77c39404a9a98c6e2283d84815cba053_***_Karl Hawkins 992eb4cb18b61c0cd3da6e0215ac787c_***_Thierry Maffeis 235e125ac3463e2ee7fc98604bf879ce_***_Christopher Wright |
author |
Daniel Curtis Rhodri Williams Karl Hawkins Thierry Maffeis Christopher Wright |
author2 |
Luke Burke Chris J. Mortimer Daniel Curtis Aled R. Lewis Rhodri Williams Karl Hawkins Thierry Maffeis Chris J. Wright Christopher Wright |
format |
Journal article |
container_title |
Materials Science and Engineering: C |
container_volume |
70 |
container_start_page |
512 |
publishDate |
2017 |
institution |
Swansea University |
issn |
0928-4931 |
doi_str_mv |
10.1016/j.msec.2016.09.014 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. |
published_date |
2017-01-01T01:09:43Z |
_version_ |
1821365799720321024 |
score |
11.04748 |