Journal article 1313 views 776 downloads
The fabrication of iron oxide nanoparticle-nanofiber composites by electrospinning and their applications in tissue engineering
Biotechnology Journal, Volume: 12, Start page: 1600693
Swansea University Author: Christopher Wright
-
PDF | Accepted Manuscript
Download (1.16MB)
DOI (Published version): 10.1002/biot.201600693
Abstract
This paper reviews the use of iron oxide nanoparticle-nanofiber composites in tissue engineering with a focus on the electrospinning technique. Electrospinning is an established method of scaffold fabrication offering a number of key advantages which include its facile nature, with electrospun mater...
Published in: | Biotechnology Journal |
---|---|
ISSN: | 1860-6768 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa32988 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
This paper reviews the use of iron oxide nanoparticle-nanofiber composites in tissue engineering with a focus on the electrospinning technique. Electrospinning is an established method of scaffold fabrication offering a number of key advantages which include its facile nature, with electrospun materials offering a high surface area to volume ratio, potential for the release of drugs and antimicrobials, controllable fiber diameters and high porosity and permeability. A number of different techniques for the preparation of iron oxide nanoparticles including their functionalization are discussed along with their applications in the biomedical field. The review then focusses on the fabrication of nanoparticle-nanofiber composite scaffolds formed using electrospinning. The advantages and disadvantages of current fabrication techniques are discussed including the fabrication of nanofibers using pre-synthesized nanoparticles and post-treatment synthesized nanoparticles. We demonstrate that emerging in-situ synthesis techniques show promise by offering a reduced number of steps and simpler procedures for the production of magnetic scaffolds. These scaffolds have a number of applications in tissue engineering, allowing for improved bone and tissue repair. |
---|---|
Keywords: |
Electrospinning; Iron oxide nanoparticles; In-situ synthesis; Nanoparticle-Nanofiber composites; Tissue engineering scaffolds |
College: |
Faculty of Science and Engineering |
Start Page: |
1600693 |