No Cover Image

Journal article 1550 views 176 downloads

An enhanced rheometer inertia correction procedure (ERIC) for the study of gelling systems using combined motor-transducer rheometers

R. E. Hudson, A. J. Holder, Karl Hawkins Orcid Logo, Daniel Curtis Orcid Logo, Rhodri Williams Orcid Logo

Physics of Fluids, Volume: 29, Issue: 12

Swansea University Authors: Karl Hawkins Orcid Logo, Daniel Curtis Orcid Logo, Rhodri Williams Orcid Logo

Check full text

DOI (Published version): 10.1063/1.4993308

Abstract

The rheological characterisation of viscoelastic materials undergoing a sol-gel transition at the Gel Point (GP) has important applications in a wide range of industrial, biological, and clinical environments and can provide information regarding both kinetic and microstructural aspects of gelation....

Full description

Published in: Physics of Fluids
ISSN: 1070-6631 1089-7666
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa35940
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The rheological characterisation of viscoelastic materials undergoing a sol-gel transition at the Gel Point (GP) has important applications in a wide range of industrial, biological, and clinical environments and can provide information regarding both kinetic and microstructural aspects of gelation. The most rigorous basis for identifying the GP involves exploiting the frequency dependence of the real and imaginary parts of the complex shear modulus of the critical gel (the system at the GP) measured under small amplitude oscillatory shear conditions. This approach to GP identification requires that rheological data be obtained over a range of oscillatory shear frequencies. Such measurements are limited by sample mutation considerations (at low frequencies) and, when experiments are conducted using combined motor-transducer (CMT) rheometers, by instrument inertia considerations (at high frequencies). Together, sample mutation and inertia induced artefacts can lead to significant errors in the determination of the GP. Overcoming such artefacts is important, however, as the extension of the range of frequencies available to the experimentalist promises both more accurate GP determination and the ability to study rapidly gelling samples. Herein, we exploit the frequency independent viscoelastic properties of the critical gel to develop and evaluate an enhanced rheometer inertia correction procedure. The procedure allows acquisition of valid GP data at previously inaccessible frequencies (using CMT rheometers) and is applied in a study of the concentration dependence of bovine gelatin gelation GP parameters. A previously unreported concentration dependence of the stress relaxation exponent (α) for critical gelatin gels has been identified, which approaches a limiting value (α = 0.7) at low gelatin concentrations, this being in agreement with previous studies and theoretical predictions for percolating systems at the GP.
Keywords: Gels, Mechanical stress, Oscillatory shear measurements, Shear modulus, Solgels
College: Faculty of Science and Engineering
Issue: 12