No Cover Image

Journal article 93 views

Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering

Matthew Turner Orcid Logo, Thomas Jovic, Lydia Bullock, Laurence Hill, Bethan Thomas, Salvatore Gazze, Thierry Maffeis Orcid Logo, Lewis Francis Orcid Logo, Karl Hawkins Orcid Logo, Yannick M. Sillmann, Ana M.P. Baggio, Peter Dunstan Orcid Logo, Cathy Thornton Orcid Logo, Fernando P.S. Guastaldi, Mark A. Randolph, Iain Whitaker

Carbohydrate Polymers, Start page: 124671

Swansea University Authors: Matthew Turner Orcid Logo, Thomas Jovic, Lydia Bullock, Laurence Hill, Bethan Thomas, Salvatore Gazze, Thierry Maffeis Orcid Logo, Lewis Francis Orcid Logo, Karl Hawkins Orcid Logo, Peter Dunstan Orcid Logo, Cathy Thornton Orcid Logo, Iain Whitaker

Full text not available from this repository: check for access using links below.

Abstract

Nanocellulose (NC) has gained significant traction as a viable material for tissue engineering. Whilst traditionally isolated from plants, tunicates offer a sustainable source of NC with high purity and high crystallinity, making tunicate-derived NC appropriate for 3D bioprinting applications. We in...

Full description

Published in: Carbohydrate Polymers
ISSN: 0144-8617 1879-1344
Published: Elsevier BV 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa70871
first_indexed 2025-11-10T10:29:22Z
last_indexed 2025-11-11T06:53:59Z
id cronfa70871
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-11-10T10:29:16.5707849</datestamp><bib-version>v2</bib-version><id>70871</id><entry>2025-11-10</entry><title>Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering</title><swanseaauthors><author><sid>d6ee69e43774ed1124d27923140b1e0b</sid><ORCID>0000-0002-1369-4051</ORCID><firstname>Matthew</firstname><surname>Turner</surname><name>Matthew Turner</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7d95ed2bceb18fc0fdfd4048277c6eed</sid><firstname>Thomas</firstname><surname>Jovic</surname><name>Thomas Jovic</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ae8a3f5d1bfe72b0591376298a6b5ab4</sid><firstname>Lydia</firstname><surname>Bullock</surname><name>Lydia Bullock</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cae9169a5c680004faa164faad4e6848</sid><firstname>Laurence</firstname><surname>Hill</surname><name>Laurence Hill</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>09ea6b20932c7cf460b9e3459130be1f</sid><firstname>Bethan</firstname><surname>Thomas</surname><name>Bethan Thomas</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>586f1f49652b97c5c3ab99a45a1c58bf</sid><firstname>Salvatore</firstname><surname>Gazze</surname><name>Salvatore Gazze</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>992eb4cb18b61c0cd3da6e0215ac787c</sid><ORCID>0000-0003-2357-0092</ORCID><firstname>Thierry</firstname><surname>Maffeis</surname><name>Thierry Maffeis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>10f61f9c1248951c1a33f6a89498f37d</sid><ORCID>0000-0002-7803-7714</ORCID><firstname>Lewis</firstname><surname>Francis</surname><name>Lewis Francis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>77c39404a9a98c6e2283d84815cba053</sid><ORCID>0000-0003-0174-4151</ORCID><firstname>Karl</firstname><surname>Hawkins</surname><name>Karl Hawkins</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>eada15d4d33fcb3dfddcff43f1323bd6</sid><ORCID>0000-0002-4337-4307</ORCID><firstname>Peter</firstname><surname>Dunstan</surname><name>Peter Dunstan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c71a7a4be7361094d046d312202bce0c</sid><ORCID>0000-0002-5153-573X</ORCID><firstname>Cathy</firstname><surname>Thornton</surname><name>Cathy Thornton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>830074c59291938a55b480dcbee4697e</sid><ORCID/><firstname>Iain</firstname><surname>Whitaker</surname><name>Iain Whitaker</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-11-10</date><deptcode>MEDS</deptcode><abstract>Nanocellulose (NC) has gained significant traction as a viable material for tissue engineering. Whilst traditionally isolated from plants, tunicates offer a sustainable source of NC with high purity and high crystallinity, making tunicate-derived NC appropriate for 3D bioprinting applications. We investigated 3 chemically distinct varieties of tunicate-derived NC: carboxymethylated (CTC), enzymatically pretreated (ETC), and oxidised (TTC). The physicochemical properties of each variant were characterised by SEM, AFM, Raman spectroscopy, and mechanical compression. Notably, ETC had the lowest aspect ratio, smallest mean pore diameter, greatest optical clarity, and highest ultimate compressive strength under uniaxial loading, whilst the inverse was observed for TTC. Rheological analysis revealed a significantly higher loss tangent for ETC compared with CTC and TTC, along with a differential impact of temperature on the viscosity of each material. ETC demonstrated superior line width resolution both before and after calcium chloride crosslinking. All materials exhibited excellent biological compatibility with a stable turnover of cells as assessed by live/dead staining of embedded primary chondrocytes. NC was nonimmunogenic, and the implantation of NC into immunocompetent mice did not result in an adverse reaction. Tunicate NC has great potential for tissue engineering with excellent structural, biological, and mechanical properties for tissue engineering applications.</abstract><type>Journal Article</type><journal>Carbohydrate Polymers</journal><volume>0</volume><journalNumber/><paginationStart>124671</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0144-8617</issnPrint><issnElectronic>1879-1344</issnElectronic><keywords>Nanocellulose; Bioprinting; CharacterisationTunicate; Biocompatibility; Biomaterial</keywords><publishedDay>8</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-11-08</publishedDate><doi>10.1016/j.carbpol.2025.124671</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>This study was supported by The Scar Free Foundation &amp; Health and Care Research Wales Programme of research in Reconstructive Surgery &amp; Regenerative Medicine, which has been established in the ReconRegen Research Centre at Swansea University in partnership with Swansea Bay University Health Board.</funders><projectreference/><lastEdited>2025-11-10T10:29:16.5707849</lastEdited><Created>2025-11-10T10:19:02.8552734</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Matthew</firstname><surname>Turner</surname><orcid>0000-0002-1369-4051</orcid><order>1</order></author><author><firstname>Thomas</firstname><surname>Jovic</surname><order>2</order></author><author><firstname>Lydia</firstname><surname>Bullock</surname><order>3</order></author><author><firstname>Laurence</firstname><surname>Hill</surname><order>4</order></author><author><firstname>Bethan</firstname><surname>Thomas</surname><order>5</order></author><author><firstname>Salvatore</firstname><surname>Gazze</surname><order>6</order></author><author><firstname>Thierry</firstname><surname>Maffeis</surname><orcid>0000-0003-2357-0092</orcid><order>7</order></author><author><firstname>Lewis</firstname><surname>Francis</surname><orcid>0000-0002-7803-7714</orcid><order>8</order></author><author><firstname>Karl</firstname><surname>Hawkins</surname><orcid>0000-0003-0174-4151</orcid><order>9</order></author><author><firstname>Yannick M.</firstname><surname>Sillmann</surname><order>10</order></author><author><firstname>Ana M.P.</firstname><surname>Baggio</surname><order>11</order></author><author><firstname>Peter</firstname><surname>Dunstan</surname><orcid>0000-0002-4337-4307</orcid><order>12</order></author><author><firstname>Cathy</firstname><surname>Thornton</surname><orcid>0000-0002-5153-573X</orcid><order>13</order></author><author><firstname>Fernando P.S.</firstname><surname>Guastaldi</surname><order>14</order></author><author><firstname>Mark A.</firstname><surname>Randolph</surname><order>15</order></author><author><firstname>Iain</firstname><surname>Whitaker</surname><orcid/><order>16</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2025-11-10T10:29:16.5707849 v2 70871 2025-11-10 Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering d6ee69e43774ed1124d27923140b1e0b 0000-0002-1369-4051 Matthew Turner Matthew Turner true false 7d95ed2bceb18fc0fdfd4048277c6eed Thomas Jovic Thomas Jovic true false ae8a3f5d1bfe72b0591376298a6b5ab4 Lydia Bullock Lydia Bullock true false cae9169a5c680004faa164faad4e6848 Laurence Hill Laurence Hill true false 09ea6b20932c7cf460b9e3459130be1f Bethan Thomas Bethan Thomas true false 586f1f49652b97c5c3ab99a45a1c58bf Salvatore Gazze Salvatore Gazze true false 992eb4cb18b61c0cd3da6e0215ac787c 0000-0003-2357-0092 Thierry Maffeis Thierry Maffeis true false 10f61f9c1248951c1a33f6a89498f37d 0000-0002-7803-7714 Lewis Francis Lewis Francis true false 77c39404a9a98c6e2283d84815cba053 0000-0003-0174-4151 Karl Hawkins Karl Hawkins true false eada15d4d33fcb3dfddcff43f1323bd6 0000-0002-4337-4307 Peter Dunstan Peter Dunstan true false c71a7a4be7361094d046d312202bce0c 0000-0002-5153-573X Cathy Thornton Cathy Thornton true false 830074c59291938a55b480dcbee4697e Iain Whitaker Iain Whitaker true false 2025-11-10 MEDS Nanocellulose (NC) has gained significant traction as a viable material for tissue engineering. Whilst traditionally isolated from plants, tunicates offer a sustainable source of NC with high purity and high crystallinity, making tunicate-derived NC appropriate for 3D bioprinting applications. We investigated 3 chemically distinct varieties of tunicate-derived NC: carboxymethylated (CTC), enzymatically pretreated (ETC), and oxidised (TTC). The physicochemical properties of each variant were characterised by SEM, AFM, Raman spectroscopy, and mechanical compression. Notably, ETC had the lowest aspect ratio, smallest mean pore diameter, greatest optical clarity, and highest ultimate compressive strength under uniaxial loading, whilst the inverse was observed for TTC. Rheological analysis revealed a significantly higher loss tangent for ETC compared with CTC and TTC, along with a differential impact of temperature on the viscosity of each material. ETC demonstrated superior line width resolution both before and after calcium chloride crosslinking. All materials exhibited excellent biological compatibility with a stable turnover of cells as assessed by live/dead staining of embedded primary chondrocytes. NC was nonimmunogenic, and the implantation of NC into immunocompetent mice did not result in an adverse reaction. Tunicate NC has great potential for tissue engineering with excellent structural, biological, and mechanical properties for tissue engineering applications. Journal Article Carbohydrate Polymers 0 124671 Elsevier BV 0144-8617 1879-1344 Nanocellulose; Bioprinting; CharacterisationTunicate; Biocompatibility; Biomaterial 8 11 2025 2025-11-08 10.1016/j.carbpol.2025.124671 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University SU Library paid the OA fee (TA Institutional Deal) This study was supported by The Scar Free Foundation & Health and Care Research Wales Programme of research in Reconstructive Surgery & Regenerative Medicine, which has been established in the ReconRegen Research Centre at Swansea University in partnership with Swansea Bay University Health Board. 2025-11-10T10:29:16.5707849 2025-11-10T10:19:02.8552734 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Matthew Turner 0000-0002-1369-4051 1 Thomas Jovic 2 Lydia Bullock 3 Laurence Hill 4 Bethan Thomas 5 Salvatore Gazze 6 Thierry Maffeis 0000-0003-2357-0092 7 Lewis Francis 0000-0002-7803-7714 8 Karl Hawkins 0000-0003-0174-4151 9 Yannick M. Sillmann 10 Ana M.P. Baggio 11 Peter Dunstan 0000-0002-4337-4307 12 Cathy Thornton 0000-0002-5153-573X 13 Fernando P.S. Guastaldi 14 Mark A. Randolph 15 Iain Whitaker 16
title Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering
spellingShingle Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering
Matthew Turner
Thomas Jovic
Lydia Bullock
Laurence Hill
Bethan Thomas
Salvatore Gazze
Thierry Maffeis
Lewis Francis
Karl Hawkins
Peter Dunstan
Cathy Thornton
Iain Whitaker
title_short Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering
title_full Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering
title_fullStr Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering
title_full_unstemmed Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering
title_sort Characterisation, biocompatibility, and immunogenicity of tunicate-derived nanocellulose for tissue engineering
author_id_str_mv d6ee69e43774ed1124d27923140b1e0b
7d95ed2bceb18fc0fdfd4048277c6eed
ae8a3f5d1bfe72b0591376298a6b5ab4
cae9169a5c680004faa164faad4e6848
09ea6b20932c7cf460b9e3459130be1f
586f1f49652b97c5c3ab99a45a1c58bf
992eb4cb18b61c0cd3da6e0215ac787c
10f61f9c1248951c1a33f6a89498f37d
77c39404a9a98c6e2283d84815cba053
eada15d4d33fcb3dfddcff43f1323bd6
c71a7a4be7361094d046d312202bce0c
830074c59291938a55b480dcbee4697e
author_id_fullname_str_mv d6ee69e43774ed1124d27923140b1e0b_***_Matthew Turner
7d95ed2bceb18fc0fdfd4048277c6eed_***_Thomas Jovic
ae8a3f5d1bfe72b0591376298a6b5ab4_***_Lydia Bullock
cae9169a5c680004faa164faad4e6848_***_Laurence Hill
09ea6b20932c7cf460b9e3459130be1f_***_Bethan Thomas
586f1f49652b97c5c3ab99a45a1c58bf_***_Salvatore Gazze
992eb4cb18b61c0cd3da6e0215ac787c_***_Thierry Maffeis
10f61f9c1248951c1a33f6a89498f37d_***_Lewis Francis
77c39404a9a98c6e2283d84815cba053_***_Karl Hawkins
eada15d4d33fcb3dfddcff43f1323bd6_***_Peter Dunstan
c71a7a4be7361094d046d312202bce0c_***_Cathy Thornton
830074c59291938a55b480dcbee4697e_***_Iain Whitaker
author Matthew Turner
Thomas Jovic
Lydia Bullock
Laurence Hill
Bethan Thomas
Salvatore Gazze
Thierry Maffeis
Lewis Francis
Karl Hawkins
Peter Dunstan
Cathy Thornton
Iain Whitaker
author2 Matthew Turner
Thomas Jovic
Lydia Bullock
Laurence Hill
Bethan Thomas
Salvatore Gazze
Thierry Maffeis
Lewis Francis
Karl Hawkins
Yannick M. Sillmann
Ana M.P. Baggio
Peter Dunstan
Cathy Thornton
Fernando P.S. Guastaldi
Mark A. Randolph
Iain Whitaker
format Journal article
container_title Carbohydrate Polymers
container_volume 0
container_start_page 124671
publishDate 2025
institution Swansea University
issn 0144-8617
1879-1344
doi_str_mv 10.1016/j.carbpol.2025.124671
publisher Elsevier BV
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine
document_store_str 0
active_str 0
description Nanocellulose (NC) has gained significant traction as a viable material for tissue engineering. Whilst traditionally isolated from plants, tunicates offer a sustainable source of NC with high purity and high crystallinity, making tunicate-derived NC appropriate for 3D bioprinting applications. We investigated 3 chemically distinct varieties of tunicate-derived NC: carboxymethylated (CTC), enzymatically pretreated (ETC), and oxidised (TTC). The physicochemical properties of each variant were characterised by SEM, AFM, Raman spectroscopy, and mechanical compression. Notably, ETC had the lowest aspect ratio, smallest mean pore diameter, greatest optical clarity, and highest ultimate compressive strength under uniaxial loading, whilst the inverse was observed for TTC. Rheological analysis revealed a significantly higher loss tangent for ETC compared with CTC and TTC, along with a differential impact of temperature on the viscosity of each material. ETC demonstrated superior line width resolution both before and after calcium chloride crosslinking. All materials exhibited excellent biological compatibility with a stable turnover of cells as assessed by live/dead staining of embedded primary chondrocytes. NC was nonimmunogenic, and the implantation of NC into immunocompetent mice did not result in an adverse reaction. Tunicate NC has great potential for tissue engineering with excellent structural, biological, and mechanical properties for tissue engineering applications.
published_date 2025-11-08T05:31:53Z
_version_ 1851098098324996096
score 11.089386