No Cover Image

Journal article 249 views 57 downloads

Timelike entanglement entropy: A top-down approach

Carlos Nunez Orcid Logo, Dibakar Roychowdhury Orcid Logo

Physical Review D, Volume: 112, Issue: 2

Swansea University Author: Carlos Nunez Orcid Logo

  • 70047.VoR.pdf

    PDF | Version of Record

    Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license.

    Download (419.56KB)

Check full text

DOI (Published version): 10.1103/vjyt-xc15

Abstract

We investigate the concept of timelike entanglement entropy (tEE) within the framework of holography. We introduce a robust top-down prescription for computing tEE using the holographic duals to higher-dimensional quantum field theories—both conformal and confining—eliminating the ambiguities typica...

Full description

Published in: Physical Review D
ISSN: 2470-0010 2470-0029
Published: American Physical Society (APS) 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa70047
first_indexed 2025-07-29T16:01:44Z
last_indexed 2025-08-07T08:12:43Z
id cronfa70047
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-08-06T15:55:54.9395254</datestamp><bib-version>v2</bib-version><id>70047</id><entry>2025-07-29</entry><title>Timelike entanglement entropy: A top-down approach</title><swanseaauthors><author><sid>c0d6540c37ad4b0a5934d3978048fb2a</sid><ORCID>0000-0002-1958-9551</ORCID><firstname>Carlos</firstname><surname>Nunez</surname><name>Carlos Nunez</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-07-29</date><deptcode>BGPS</deptcode><abstract>We investigate the concept of timelike entanglement entropy (tEE) within the framework of holography. We introduce a robust top-down prescription for computing tEE using the holographic duals to higher-dimensional quantum field theories&#x2014;both conformal and confining&#x2014;eliminating the ambiguities typically associated with analytic continuation from Euclidean to Lorentzian signatures. We present accurate analytic approximations for tEE and timelike separations in slab geometries. We establish a clear stability criterion for bulk embeddings and demonstrate that tEE serves as a powerful tool for computing conformal field theory central charges, extending and strengthening previous results. Finally, we apply our framework to holographic confining backgrounds, revealing distinctive behaviors like phase transitions.</abstract><type>Journal Article</type><journal>Physical Review D</journal><volume>112</volume><journalNumber>2</journalNumber><paginationStart/><paginationEnd/><publisher>American Physical Society (APS)</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2470-0010</issnPrint><issnElectronic>2470-0029</issnElectronic><keywords/><publishedDay>28</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-07-28</publishedDate><doi>10.1103/vjyt-xc15</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>D. R. would like to acknowledge The Royal Society, UK for financial assistance. D. R. also acknowledges the Mathematical Research Impact Centric Support (MATRICS) Grant No. MTR/2023/ 000005 received from ANRF, India. C.N. is supported by STFC&#x2019;s Grants No. ST/Y509644-1, No. ST/X000648/1, and No. ST/T000813/1 ; SCOAP3</funders><projectreference/><lastEdited>2025-08-06T15:55:54.9395254</lastEdited><Created>2025-07-29T07:41:24.1376462</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Carlos</firstname><surname>Nunez</surname><orcid>0000-0002-1958-9551</orcid><order>1</order></author><author><firstname>Dibakar</firstname><surname>Roychowdhury</surname><orcid>0000-0003-0602-425x</orcid><order>2</order></author></authors><documents><document><filename>70047__34919__2b34acf95c384c5e9ffee9ec5d85dae1.pdf</filename><originalFilename>70047.VoR.pdf</originalFilename><uploaded>2025-08-06T15:51:54.9007157</uploaded><type>Output</type><contentLength>429633</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-08-06T15:55:54.9395254 v2 70047 2025-07-29 Timelike entanglement entropy: A top-down approach c0d6540c37ad4b0a5934d3978048fb2a 0000-0002-1958-9551 Carlos Nunez Carlos Nunez true false 2025-07-29 BGPS We investigate the concept of timelike entanglement entropy (tEE) within the framework of holography. We introduce a robust top-down prescription for computing tEE using the holographic duals to higher-dimensional quantum field theories—both conformal and confining—eliminating the ambiguities typically associated with analytic continuation from Euclidean to Lorentzian signatures. We present accurate analytic approximations for tEE and timelike separations in slab geometries. We establish a clear stability criterion for bulk embeddings and demonstrate that tEE serves as a powerful tool for computing conformal field theory central charges, extending and strengthening previous results. Finally, we apply our framework to holographic confining backgrounds, revealing distinctive behaviors like phase transitions. Journal Article Physical Review D 112 2 American Physical Society (APS) 2470-0010 2470-0029 28 7 2025 2025-07-28 10.1103/vjyt-xc15 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University SU Library paid the OA fee (TA Institutional Deal) D. R. would like to acknowledge The Royal Society, UK for financial assistance. D. R. also acknowledges the Mathematical Research Impact Centric Support (MATRICS) Grant No. MTR/2023/ 000005 received from ANRF, India. C.N. is supported by STFC’s Grants No. ST/Y509644-1, No. ST/X000648/1, and No. ST/T000813/1 ; SCOAP3 2025-08-06T15:55:54.9395254 2025-07-29T07:41:24.1376462 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Carlos Nunez 0000-0002-1958-9551 1 Dibakar Roychowdhury 0000-0003-0602-425x 2 70047__34919__2b34acf95c384c5e9ffee9ec5d85dae1.pdf 70047.VoR.pdf 2025-08-06T15:51:54.9007157 Output 429633 application/pdf Version of Record true Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. true eng https://creativecommons.org/licenses/by/4.0/
title Timelike entanglement entropy: A top-down approach
spellingShingle Timelike entanglement entropy: A top-down approach
Carlos Nunez
title_short Timelike entanglement entropy: A top-down approach
title_full Timelike entanglement entropy: A top-down approach
title_fullStr Timelike entanglement entropy: A top-down approach
title_full_unstemmed Timelike entanglement entropy: A top-down approach
title_sort Timelike entanglement entropy: A top-down approach
author_id_str_mv c0d6540c37ad4b0a5934d3978048fb2a
author_id_fullname_str_mv c0d6540c37ad4b0a5934d3978048fb2a_***_Carlos Nunez
author Carlos Nunez
author2 Carlos Nunez
Dibakar Roychowdhury
format Journal article
container_title Physical Review D
container_volume 112
container_issue 2
publishDate 2025
institution Swansea University
issn 2470-0010
2470-0029
doi_str_mv 10.1103/vjyt-xc15
publisher American Physical Society (APS)
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description We investigate the concept of timelike entanglement entropy (tEE) within the framework of holography. We introduce a robust top-down prescription for computing tEE using the holographic duals to higher-dimensional quantum field theories—both conformal and confining—eliminating the ambiguities typically associated with analytic continuation from Euclidean to Lorentzian signatures. We present accurate analytic approximations for tEE and timelike separations in slab geometries. We establish a clear stability criterion for bulk embeddings and demonstrate that tEE serves as a powerful tool for computing conformal field theory central charges, extending and strengthening previous results. Finally, we apply our framework to holographic confining backgrounds, revealing distinctive behaviors like phase transitions.
published_date 2025-07-28T05:29:49Z
_version_ 1851097968322543616
score 11.089407