No Cover Image

Journal article 263 views 79 downloads

Development of ZnO Buffer Layers for As‐Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%

Luksa Kujovic Orcid Logo, Xiaolei Liu, Mustafa Togay, Ali Abbas, Adam M. Law, Luke O. Jones, Kieran M. Curson, Kurt L. Barth, Jake W. Bowers, John M. Walls, Ochai Oklobia, Dan Lamb Orcid Logo, Stuart Irvine, Wei Zhang, Chungho Lee, Timothy Nagle, Dingyuan Lu, Gang Xiong

Advanced Materials Technologies, Volume: 10, Issue: 13, Start page: 2401364

Swansea University Authors: Ochai Oklobia, Dan Lamb Orcid Logo, Stuart Irvine

  • 69990.VOR.pdf

    PDF | Version of Record

    © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License (CC BY).

    Download (1.43MB)

Check full text

DOI (Published version): 10.1002/admt.202401364

Abstract

The front buffer layer plays an important role in CdSeTe/CdTe solar cells and helps achieve high conversion efficiencies. Incorporating ZnO buffer layers in the CdSeTe/CdTe device structure has led to highly efficient and stable solar cells. In this study, the optimization of ZnO buffer layers for C...

Full description

Published in: Advanced Materials Technologies
ISSN: 2365-709X 2365-709X
Published: Wiley 2025
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa69990
first_indexed 2025-07-17T11:35:37Z
last_indexed 2025-07-18T05:00:04Z
id cronfa69990
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-07-17T12:37:17.0820352</datestamp><bib-version>v2</bib-version><id>69990</id><entry>2025-07-17</entry><title>Development of ZnO Buffer Layers for As&#x2010;Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%</title><swanseaauthors><author><sid>d447e8d0345473fa625813546bccc592</sid><firstname>Ochai</firstname><surname>Oklobia</surname><name>Ochai Oklobia</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>decd92a653848a357f0c6f8e38e0aea0</sid><ORCID>0000-0002-4762-4641</ORCID><firstname>Dan</firstname><surname>Lamb</surname><name>Dan Lamb</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>1ddb966eccef99aa96e87f1ea4917f1f</sid><firstname>Stuart</firstname><surname>Irvine</surname><name>Stuart Irvine</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-07-17</date><deptcode>EAAS</deptcode><abstract>The front buffer layer plays an important role in CdSeTe/CdTe solar cells and helps achieve high conversion efficiencies. Incorporating ZnO buffer layers in the CdSeTe/CdTe device structure has led to highly efficient and stable solar cells. In this study, the optimization of ZnO buffer layers for CdSeTe/CdTe solar cells is reported. The ZnO films are radio frequency sputter&#x2010;deposited on SnO2:F coated soda&#x2010;lime glass substrates. The substrate temperature for the ZnO deposition is varied from 22 to 500 &#xB0;C. An efficiency of 20.74% is achieved using ZnO deposited at 100 &#xB0;C. The ZnO thickness is varied between 40 nm and 75 nm. Following the ZnO depositions, devices were fabricated using First Solar's CdSeTe/CdTe absorber, CdCl2 treatment, and back contact. The optimal ZnO deposition temperature and thickness is 100 &#xB0;C and 65 nm, respectively. The STEM&#x2010;EDX analysis shows that within the detection limits, chlorine is not detected at the front interface of the devices using ZnO deposited at 22 &#xB0;C and 100 &#xB0;C. However, depositing ZnO at 500 &#xB0;C results in chlorine segregation appearing at the ZnO/CdSeTe boundary. This suggests that chlorine is not needed to passivate the ZnO/CdSeTe interface during the lower temperature depositions. The nanocrystalline ZnO deposited at lower temperatures results in a high&#x2010;quality interface.</abstract><type>Journal Article</type><journal>Advanced Materials Technologies</journal><volume>10</volume><journalNumber>13</journalNumber><paginationStart>2401364</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2365-709X</issnPrint><issnElectronic>2365-709X</issnElectronic><keywords>buffer layer, CdSeTe/CdTe, solar cells, ZnO</keywords><publishedDay>8</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-07-08</publishedDate><doi>10.1002/admt.202401364</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>Engineering and Physical Sciences Research Council. Grant Numbers: EP/W00092X/1, EP/W000555/1</funders><projectreference/><lastEdited>2025-07-17T12:37:17.0820352</lastEdited><Created>2025-07-17T12:22:32.9350931</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Luksa</firstname><surname>Kujovic</surname><orcid>0009-0009-3980-1933</orcid><order>1</order></author><author><firstname>Xiaolei</firstname><surname>Liu</surname><order>2</order></author><author><firstname>Mustafa</firstname><surname>Togay</surname><order>3</order></author><author><firstname>Ali</firstname><surname>Abbas</surname><order>4</order></author><author><firstname>Adam M.</firstname><surname>Law</surname><order>5</order></author><author><firstname>Luke O.</firstname><surname>Jones</surname><order>6</order></author><author><firstname>Kieran M.</firstname><surname>Curson</surname><order>7</order></author><author><firstname>Kurt L.</firstname><surname>Barth</surname><order>8</order></author><author><firstname>Jake W.</firstname><surname>Bowers</surname><order>9</order></author><author><firstname>John M.</firstname><surname>Walls</surname><order>10</order></author><author><firstname>Ochai</firstname><surname>Oklobia</surname><order>11</order></author><author><firstname>Dan</firstname><surname>Lamb</surname><orcid>0000-0002-4762-4641</orcid><order>12</order></author><author><firstname>Stuart</firstname><surname>Irvine</surname><order>13</order></author><author><firstname>Wei</firstname><surname>Zhang</surname><order>14</order></author><author><firstname>Chungho</firstname><surname>Lee</surname><order>15</order></author><author><firstname>Timothy</firstname><surname>Nagle</surname><order>16</order></author><author><firstname>Dingyuan</firstname><surname>Lu</surname><order>17</order></author><author><firstname>Gang</firstname><surname>Xiong</surname><order>18</order></author></authors><documents><document><filename>69990__34786__5f577363813c4afbbf50686d7b4d0fa0.pdf</filename><originalFilename>69990.VOR.pdf</originalFilename><uploaded>2025-07-17T12:33:52.6551361</uploaded><type>Output</type><contentLength>1504214</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License (CC BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2025-07-17T12:37:17.0820352 v2 69990 2025-07-17 Development of ZnO Buffer Layers for As‐Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20% d447e8d0345473fa625813546bccc592 Ochai Oklobia Ochai Oklobia true false decd92a653848a357f0c6f8e38e0aea0 0000-0002-4762-4641 Dan Lamb Dan Lamb true false 1ddb966eccef99aa96e87f1ea4917f1f Stuart Irvine Stuart Irvine true false 2025-07-17 EAAS The front buffer layer plays an important role in CdSeTe/CdTe solar cells and helps achieve high conversion efficiencies. Incorporating ZnO buffer layers in the CdSeTe/CdTe device structure has led to highly efficient and stable solar cells. In this study, the optimization of ZnO buffer layers for CdSeTe/CdTe solar cells is reported. The ZnO films are radio frequency sputter‐deposited on SnO2:F coated soda‐lime glass substrates. The substrate temperature for the ZnO deposition is varied from 22 to 500 °C. An efficiency of 20.74% is achieved using ZnO deposited at 100 °C. The ZnO thickness is varied between 40 nm and 75 nm. Following the ZnO depositions, devices were fabricated using First Solar's CdSeTe/CdTe absorber, CdCl2 treatment, and back contact. The optimal ZnO deposition temperature and thickness is 100 °C and 65 nm, respectively. The STEM‐EDX analysis shows that within the detection limits, chlorine is not detected at the front interface of the devices using ZnO deposited at 22 °C and 100 °C. However, depositing ZnO at 500 °C results in chlorine segregation appearing at the ZnO/CdSeTe boundary. This suggests that chlorine is not needed to passivate the ZnO/CdSeTe interface during the lower temperature depositions. The nanocrystalline ZnO deposited at lower temperatures results in a high‐quality interface. Journal Article Advanced Materials Technologies 10 13 2401364 Wiley 2365-709X 2365-709X buffer layer, CdSeTe/CdTe, solar cells, ZnO 8 7 2025 2025-07-08 10.1002/admt.202401364 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Another institution paid the OA fee Engineering and Physical Sciences Research Council. Grant Numbers: EP/W00092X/1, EP/W000555/1 2025-07-17T12:37:17.0820352 2025-07-17T12:22:32.9350931 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Luksa Kujovic 0009-0009-3980-1933 1 Xiaolei Liu 2 Mustafa Togay 3 Ali Abbas 4 Adam M. Law 5 Luke O. Jones 6 Kieran M. Curson 7 Kurt L. Barth 8 Jake W. Bowers 9 John M. Walls 10 Ochai Oklobia 11 Dan Lamb 0000-0002-4762-4641 12 Stuart Irvine 13 Wei Zhang 14 Chungho Lee 15 Timothy Nagle 16 Dingyuan Lu 17 Gang Xiong 18 69990__34786__5f577363813c4afbbf50686d7b4d0fa0.pdf 69990.VOR.pdf 2025-07-17T12:33:52.6551361 Output 1504214 application/pdf Version of Record true © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License (CC BY). true eng http://creativecommons.org/licenses/by/4.0/
title Development of ZnO Buffer Layers for As‐Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%
spellingShingle Development of ZnO Buffer Layers for As‐Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%
Ochai Oklobia
Dan Lamb
Stuart Irvine
title_short Development of ZnO Buffer Layers for As‐Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%
title_full Development of ZnO Buffer Layers for As‐Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%
title_fullStr Development of ZnO Buffer Layers for As‐Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%
title_full_unstemmed Development of ZnO Buffer Layers for As‐Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%
title_sort Development of ZnO Buffer Layers for As‐Doped CdSeTe/CdTe Solar Cells with Efficiency Exceeding 20%
author_id_str_mv d447e8d0345473fa625813546bccc592
decd92a653848a357f0c6f8e38e0aea0
1ddb966eccef99aa96e87f1ea4917f1f
author_id_fullname_str_mv d447e8d0345473fa625813546bccc592_***_Ochai Oklobia
decd92a653848a357f0c6f8e38e0aea0_***_Dan Lamb
1ddb966eccef99aa96e87f1ea4917f1f_***_Stuart Irvine
author Ochai Oklobia
Dan Lamb
Stuart Irvine
author2 Luksa Kujovic
Xiaolei Liu
Mustafa Togay
Ali Abbas
Adam M. Law
Luke O. Jones
Kieran M. Curson
Kurt L. Barth
Jake W. Bowers
John M. Walls
Ochai Oklobia
Dan Lamb
Stuart Irvine
Wei Zhang
Chungho Lee
Timothy Nagle
Dingyuan Lu
Gang Xiong
format Journal article
container_title Advanced Materials Technologies
container_volume 10
container_issue 13
container_start_page 2401364
publishDate 2025
institution Swansea University
issn 2365-709X
2365-709X
doi_str_mv 10.1002/admt.202401364
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description The front buffer layer plays an important role in CdSeTe/CdTe solar cells and helps achieve high conversion efficiencies. Incorporating ZnO buffer layers in the CdSeTe/CdTe device structure has led to highly efficient and stable solar cells. In this study, the optimization of ZnO buffer layers for CdSeTe/CdTe solar cells is reported. The ZnO films are radio frequency sputter‐deposited on SnO2:F coated soda‐lime glass substrates. The substrate temperature for the ZnO deposition is varied from 22 to 500 °C. An efficiency of 20.74% is achieved using ZnO deposited at 100 °C. The ZnO thickness is varied between 40 nm and 75 nm. Following the ZnO depositions, devices were fabricated using First Solar's CdSeTe/CdTe absorber, CdCl2 treatment, and back contact. The optimal ZnO deposition temperature and thickness is 100 °C and 65 nm, respectively. The STEM‐EDX analysis shows that within the detection limits, chlorine is not detected at the front interface of the devices using ZnO deposited at 22 °C and 100 °C. However, depositing ZnO at 500 °C results in chlorine segregation appearing at the ZnO/CdSeTe boundary. This suggests that chlorine is not needed to passivate the ZnO/CdSeTe interface during the lower temperature depositions. The nanocrystalline ZnO deposited at lower temperatures results in a high‐quality interface.
published_date 2025-07-08T14:17:25Z
_version_ 1851040565302394880
score 11.089677