Journal article 428 views 155 downloads
Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2
Small, Volume: 21, Issue: 34, Start page: 2500719
Swansea University Author:
Sumati Bhatia
-
PDF | Version of Record
© 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License.
Download (2.04MB)
DOI (Published version): 10.1002/smll.202500719
Abstract
Both polysialosides and polysulfates are known to interact with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. However, a comprehensive site by site analysis of their binding affinities and potential synergistic antiviral effects have not been performed. Here, we report on the sy...
| Published in: | Small |
|---|---|
| ISSN: | 1613-6810 1613-6829 |
| Published: |
Wiley
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69958 |
| first_indexed |
2025-07-14T11:51:09Z |
|---|---|
| last_indexed |
2025-09-05T06:12:16Z |
| id |
cronfa69958 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-09-04T10:28:42.0260595</datestamp><bib-version>v2</bib-version><id>69958</id><entry>2025-07-14</entry><title>Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2</title><swanseaauthors><author><sid>a6b1181ebdbe42bd03b24cbdb559d082</sid><ORCID>0000-0002-5123-4937</ORCID><firstname>Sumati</firstname><surname>Bhatia</surname><name>Sumati Bhatia</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-07-14</date><deptcode>EAAS</deptcode><abstract>Both polysialosides and polysulfates are known to interact with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. However, a comprehensive site by site analysis of their binding affinities and potential synergistic antiviral effects have not been performed. Here, we report on the synthesis of polysialosides with nanomolar binding affinities to spike proteins of SARS-CoV-2 in solution using microscale thermophoresis. The dendritic polyglycerol based polysialosides dPG500SA0.55 and dPG500SA0.25, with a dissociation constant Kd of 4.78 nm and 10.85 nm, respectively, bind ≈500 times stronger than the high density polysulfated analog dPG500S0.55, to intact SARS-CoV-2 virus particles or isolated spike protein. In fact, the presence of sulfate groups in a heteromultivalent compound dPG500SA0.20S0.20 weakens the binding to spike proteins. A polycarboxylated analog does not bind to SARS-CoV-2, ruling out that the interaction of polysialoside is simply driven by electrostatics. Using explicit-solvent all-atom molecular dynamics simulations and ensemble docking studies, atomistic details are obtained on the interaction of different functional groups with the SARS-CoV-2 RBD. The data support the conclusion that sialosides interact stronger than sulfates for their binding with RBD of SARS-CoV-2. Notably, the most affine binder dPG500SA0.55 inhibits SARS-CoV-2 (WT, D614G) replication up to 98.6% at 0.5 µm concentrations.</abstract><type>Journal Article</type><journal>Small</journal><volume>21</volume><journalNumber>34</journalNumber><paginationStart>2500719</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1613-6810</issnPrint><issnElectronic>1613-6829</issnElectronic><keywords>MD simulations; polysialosides; SARS-CoV-2; virus binding</keywords><publishedDay>28</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-08-28</publishedDate><doi>10.1002/smll.202500719</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>SupraFAB (BioSexSurf); Federal Ministry of Education and Research (13XP511); Berlin University Alliance (CoronaVirusPre-ExplorationProject); Royal Society of Chemistry (RG∖R1∖241050); Deutsche Forschungsgemeinschaft (458564133, 431232613–SFB1449/INF, 434130070-IRTG2662); Novo Nordisk Foundation (NNF23SA0088060).</funders><projectreference/><lastEdited>2025-09-04T10:28:42.0260595</lastEdited><Created>2025-07-14T12:41:02.5236069</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemistry</level></path><authors><author><firstname>Vinod</firstname><surname>Khatri</surname><orcid>0000-0002-7777-1984</orcid><order>1</order></author><author><firstname>Nico</firstname><surname>Boback</surname><orcid>0009-0003-5261-7168</orcid><order>2</order></author><author><firstname>Hassan</firstname><surname>Abdelwahab</surname><orcid>0009-0000-2282-1748</orcid><order>3</order></author><author><firstname>Daniela</firstname><surname>Niemeyer</surname><orcid>0000-0002-1897-6365</orcid><order>4</order></author><author><firstname>Tahlia M.</firstname><surname>Palmer</surname><orcid>0009-0001-2783-0149</orcid><order>5</order></author><author><firstname>Anil Kumar</firstname><surname>Sahoo</surname><order>6</order></author><author><firstname>Yannic</firstname><surname>Kerkhoff</surname><orcid>0000-0002-8126-2082</orcid><order>7</order></author><author><firstname>Kai</firstname><surname>Ludwig</surname><orcid>0000-0001-6808-8107</orcid><order>8</order></author><author><firstname>Julian</firstname><surname>Heinze</surname><order>9</order></author><author><firstname>Dilara</firstname><surname>Balci</surname><order>10</order></author><author><firstname>Jakob</firstname><surname>Trimpert</surname><order>11</order></author><author><firstname>Rainer</firstname><surname>Haag</surname><orcid>0000-0003-3840-162x</orcid><order>12</order></author><author><firstname>Tatyana L.</firstname><surname>Povolotsky</surname><orcid>0000-0001-5987-777x</orcid><order>13</order></author><author><firstname>Roland R.</firstname><surname>Netz</surname><orcid>0000-0003-0147-0162</orcid><order>14</order></author><author><firstname>Christian</firstname><surname>Drosten</surname><order>15</order></author><author><firstname>Daniel C.</firstname><surname>Lauster</surname><orcid>0000-0003-2009-633x</orcid><order>16</order></author><author><firstname>Sumati</firstname><surname>Bhatia</surname><orcid>0000-0002-5123-4937</orcid><order>17</order></author></authors><documents><document><filename>69958__34876__f5d42b8258d34825890c9c28564cf66c.pdf</filename><originalFilename>69958.VoR.pdf</originalFilename><uploaded>2025-07-31T11:08:33.0233018</uploaded><type>Output</type><contentLength>2142764</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-09-04T10:28:42.0260595 v2 69958 2025-07-14 Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2 a6b1181ebdbe42bd03b24cbdb559d082 0000-0002-5123-4937 Sumati Bhatia Sumati Bhatia true false 2025-07-14 EAAS Both polysialosides and polysulfates are known to interact with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. However, a comprehensive site by site analysis of their binding affinities and potential synergistic antiviral effects have not been performed. Here, we report on the synthesis of polysialosides with nanomolar binding affinities to spike proteins of SARS-CoV-2 in solution using microscale thermophoresis. The dendritic polyglycerol based polysialosides dPG500SA0.55 and dPG500SA0.25, with a dissociation constant Kd of 4.78 nm and 10.85 nm, respectively, bind ≈500 times stronger than the high density polysulfated analog dPG500S0.55, to intact SARS-CoV-2 virus particles or isolated spike protein. In fact, the presence of sulfate groups in a heteromultivalent compound dPG500SA0.20S0.20 weakens the binding to spike proteins. A polycarboxylated analog does not bind to SARS-CoV-2, ruling out that the interaction of polysialoside is simply driven by electrostatics. Using explicit-solvent all-atom molecular dynamics simulations and ensemble docking studies, atomistic details are obtained on the interaction of different functional groups with the SARS-CoV-2 RBD. The data support the conclusion that sialosides interact stronger than sulfates for their binding with RBD of SARS-CoV-2. Notably, the most affine binder dPG500SA0.55 inhibits SARS-CoV-2 (WT, D614G) replication up to 98.6% at 0.5 µm concentrations. Journal Article Small 21 34 2500719 Wiley 1613-6810 1613-6829 MD simulations; polysialosides; SARS-CoV-2; virus binding 28 8 2025 2025-08-28 10.1002/smll.202500719 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University SU Library paid the OA fee (TA Institutional Deal) SupraFAB (BioSexSurf); Federal Ministry of Education and Research (13XP511); Berlin University Alliance (CoronaVirusPre-ExplorationProject); Royal Society of Chemistry (RG∖R1∖241050); Deutsche Forschungsgemeinschaft (458564133, 431232613–SFB1449/INF, 434130070-IRTG2662); Novo Nordisk Foundation (NNF23SA0088060). 2025-09-04T10:28:42.0260595 2025-07-14T12:41:02.5236069 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemistry Vinod Khatri 0000-0002-7777-1984 1 Nico Boback 0009-0003-5261-7168 2 Hassan Abdelwahab 0009-0000-2282-1748 3 Daniela Niemeyer 0000-0002-1897-6365 4 Tahlia M. Palmer 0009-0001-2783-0149 5 Anil Kumar Sahoo 6 Yannic Kerkhoff 0000-0002-8126-2082 7 Kai Ludwig 0000-0001-6808-8107 8 Julian Heinze 9 Dilara Balci 10 Jakob Trimpert 11 Rainer Haag 0000-0003-3840-162x 12 Tatyana L. Povolotsky 0000-0001-5987-777x 13 Roland R. Netz 0000-0003-0147-0162 14 Christian Drosten 15 Daniel C. Lauster 0000-0003-2009-633x 16 Sumati Bhatia 0000-0002-5123-4937 17 69958__34876__f5d42b8258d34825890c9c28564cf66c.pdf 69958.VoR.pdf 2025-07-31T11:08:33.0233018 Output 2142764 application/pdf Version of Record true © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License. true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2 |
| spellingShingle |
Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2 Sumati Bhatia |
| title_short |
Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2 |
| title_full |
Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2 |
| title_fullStr |
Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2 |
| title_full_unstemmed |
Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2 |
| title_sort |
Polysialosides Outperform Sulfated Analogs for Binding with SARS‐CoV‐2 |
| author_id_str_mv |
a6b1181ebdbe42bd03b24cbdb559d082 |
| author_id_fullname_str_mv |
a6b1181ebdbe42bd03b24cbdb559d082_***_Sumati Bhatia |
| author |
Sumati Bhatia |
| author2 |
Vinod Khatri Nico Boback Hassan Abdelwahab Daniela Niemeyer Tahlia M. Palmer Anil Kumar Sahoo Yannic Kerkhoff Kai Ludwig Julian Heinze Dilara Balci Jakob Trimpert Rainer Haag Tatyana L. Povolotsky Roland R. Netz Christian Drosten Daniel C. Lauster Sumati Bhatia |
| format |
Journal article |
| container_title |
Small |
| container_volume |
21 |
| container_issue |
34 |
| container_start_page |
2500719 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
1613-6810 1613-6829 |
| doi_str_mv |
10.1002/smll.202500719 |
| publisher |
Wiley |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Engineering and Applied Sciences - Chemistry{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemistry |
| document_store_str |
1 |
| active_str |
0 |
| description |
Both polysialosides and polysulfates are known to interact with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. However, a comprehensive site by site analysis of their binding affinities and potential synergistic antiviral effects have not been performed. Here, we report on the synthesis of polysialosides with nanomolar binding affinities to spike proteins of SARS-CoV-2 in solution using microscale thermophoresis. The dendritic polyglycerol based polysialosides dPG500SA0.55 and dPG500SA0.25, with a dissociation constant Kd of 4.78 nm and 10.85 nm, respectively, bind ≈500 times stronger than the high density polysulfated analog dPG500S0.55, to intact SARS-CoV-2 virus particles or isolated spike protein. In fact, the presence of sulfate groups in a heteromultivalent compound dPG500SA0.20S0.20 weakens the binding to spike proteins. A polycarboxylated analog does not bind to SARS-CoV-2, ruling out that the interaction of polysialoside is simply driven by electrostatics. Using explicit-solvent all-atom molecular dynamics simulations and ensemble docking studies, atomistic details are obtained on the interaction of different functional groups with the SARS-CoV-2 RBD. The data support the conclusion that sialosides interact stronger than sulfates for their binding with RBD of SARS-CoV-2. Notably, the most affine binder dPG500SA0.55 inhibits SARS-CoV-2 (WT, D614G) replication up to 98.6% at 0.5 µm concentrations. |
| published_date |
2025-08-28T05:29:34Z |
| _version_ |
1851097952803618816 |
| score |
11.089407 |

