Journal article 119 views 10 downloads
Bratteli Diagrams, Hopf–Galois Extensions and Calculi
Symmetry, Volume: 17, Issue: 2, Start page: 164
Swansea University Author:
Edwin Beggs
-
PDF | Accepted Manuscript
© 2025 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Download (268.21KB)
DOI (Published version): 10.3390/sym17020164
Abstract
Hopf–Galois extensions extend the idea of principal bundles to noncommutative geometry, using Hopf algebras as symmetries. We show that the matrix embeddings in Bratteli diagrams are iterated direct sums of Hopf–Galois extensions (quantum principal bundles) for certain finite abelian groups. The cor...
Published in: | Symmetry |
---|---|
ISSN: | 2073-8994 |
Published: |
MDPI AG
2025
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa68985 |
first_indexed |
2025-02-27T14:46:25Z |
---|---|
last_indexed |
2025-03-12T05:35:42Z |
id |
cronfa68985 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-03-11T14:29:15.3397869</datestamp><bib-version>v2</bib-version><id>68985</id><entry>2025-02-27</entry><title>Bratteli Diagrams, Hopf–Galois Extensions and Calculi</title><swanseaauthors><author><sid>a0062e7cf6d68f05151560cdf9d14e75</sid><ORCID>0000-0002-3139-0983</ORCID><firstname>Edwin</firstname><surname>Beggs</surname><name>Edwin Beggs</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-02-27</date><deptcode>MACS</deptcode><abstract>Hopf–Galois extensions extend the idea of principal bundles to noncommutative geometry, using Hopf algebras as symmetries. We show that the matrix embeddings in Bratteli diagrams are iterated direct sums of Hopf–Galois extensions (quantum principal bundles) for certain finite abelian groups. The corresponding strong universal connections are computed. We show that (ℂ) is a trivial quantum principle bundle for the Hopf algebra ℂ[ℤ×ℤ]. We conclude with an application relating calculi on groups to calculi on matrices.</abstract><type>Journal Article</type><journal>Symmetry</journal><volume>17</volume><journalNumber>2</journalNumber><paginationStart>164</paginationStart><paginationEnd/><publisher>MDPI AG</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2073-8994</issnElectronic><keywords>Hopf–Galois extensions; Bratteli diagrams; differential calculi</keywords><publishedDay>22</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-01-22</publishedDate><doi>10.3390/sym17020164</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>Another institution paid the OA fee</apcterm><funders>The research is funded by Imam Mohammad Ibn Saud Islamic University for covering the open access fee.</funders><projectreference/><lastEdited>2025-03-11T14:29:15.3397869</lastEdited><Created>2025-02-27T14:40:46.9146671</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Ghaliah</firstname><surname>Alhamzi</surname><orcid>0000-0002-9146-7145</orcid><order>1</order></author><author><firstname>Edwin</firstname><surname>Beggs</surname><orcid>0000-0002-3139-0983</orcid><order>2</order></author></authors><documents><document><filename>68985__33698__22112d6077be4d62ab0cf4f5f07c52ee.pdf</filename><originalFilename>symmetry-17-00164-v2.pdf</originalFilename><uploaded>2025-02-27T14:45:16.4276827</uploaded><type>Output</type><contentLength>274648</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2025 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/ licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2025-03-11T14:29:15.3397869 v2 68985 2025-02-27 Bratteli Diagrams, Hopf–Galois Extensions and Calculi a0062e7cf6d68f05151560cdf9d14e75 0000-0002-3139-0983 Edwin Beggs Edwin Beggs true false 2025-02-27 MACS Hopf–Galois extensions extend the idea of principal bundles to noncommutative geometry, using Hopf algebras as symmetries. We show that the matrix embeddings in Bratteli diagrams are iterated direct sums of Hopf–Galois extensions (quantum principal bundles) for certain finite abelian groups. The corresponding strong universal connections are computed. We show that (ℂ) is a trivial quantum principle bundle for the Hopf algebra ℂ[ℤ×ℤ]. We conclude with an application relating calculi on groups to calculi on matrices. Journal Article Symmetry 17 2 164 MDPI AG 2073-8994 Hopf–Galois extensions; Bratteli diagrams; differential calculi 22 1 2025 2025-01-22 10.3390/sym17020164 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University Another institution paid the OA fee The research is funded by Imam Mohammad Ibn Saud Islamic University for covering the open access fee. 2025-03-11T14:29:15.3397869 2025-02-27T14:40:46.9146671 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Ghaliah Alhamzi 0000-0002-9146-7145 1 Edwin Beggs 0000-0002-3139-0983 2 68985__33698__22112d6077be4d62ab0cf4f5f07c52ee.pdf symmetry-17-00164-v2.pdf 2025-02-27T14:45:16.4276827 Output 274648 application/pdf Accepted Manuscript true © 2025 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. true eng https://creativecommons.org/ licenses/by/4.0/ |
title |
Bratteli Diagrams, Hopf–Galois Extensions and Calculi |
spellingShingle |
Bratteli Diagrams, Hopf–Galois Extensions and Calculi Edwin Beggs |
title_short |
Bratteli Diagrams, Hopf–Galois Extensions and Calculi |
title_full |
Bratteli Diagrams, Hopf–Galois Extensions and Calculi |
title_fullStr |
Bratteli Diagrams, Hopf–Galois Extensions and Calculi |
title_full_unstemmed |
Bratteli Diagrams, Hopf–Galois Extensions and Calculi |
title_sort |
Bratteli Diagrams, Hopf–Galois Extensions and Calculi |
author_id_str_mv |
a0062e7cf6d68f05151560cdf9d14e75 |
author_id_fullname_str_mv |
a0062e7cf6d68f05151560cdf9d14e75_***_Edwin Beggs |
author |
Edwin Beggs |
author2 |
Ghaliah Alhamzi Edwin Beggs |
format |
Journal article |
container_title |
Symmetry |
container_volume |
17 |
container_issue |
2 |
container_start_page |
164 |
publishDate |
2025 |
institution |
Swansea University |
issn |
2073-8994 |
doi_str_mv |
10.3390/sym17020164 |
publisher |
MDPI AG |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
Hopf–Galois extensions extend the idea of principal bundles to noncommutative geometry, using Hopf algebras as symmetries. We show that the matrix embeddings in Bratteli diagrams are iterated direct sums of Hopf–Galois extensions (quantum principal bundles) for certain finite abelian groups. The corresponding strong universal connections are computed. We show that (ℂ) is a trivial quantum principle bundle for the Hopf algebra ℂ[ℤ×ℤ]. We conclude with an application relating calculi on groups to calculi on matrices. |
published_date |
2025-01-22T08:18:47Z |
_version_ |
1829814537028632576 |
score |
11.058331 |