No Cover Image

Journal article 57 views

Highly Thermally Stable and Gas Selective Hexaphenylbenzene Tröger’s Base Microporous Polymers

YUE WU, Ariana Antonangelo, Caterina Bezzu Orcid Logo, Mariolino Carta Orcid Logo

ACS Applied Materials & Interfaces

Swansea University Authors: YUE WU, Ariana Antonangelo, Caterina Bezzu Orcid Logo, Mariolino Carta Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1021/acsami.4c15333

Abstract

This study shows the multistep synthesis of a series of Tröger’s base polymers of intrinsic microporosity (TB-PIMs) based on a hexaphenylbenzene (HPB) core, with a focus on evaluating their thermal stability, porosity, and CO2 capture performance. Both ladder and linear structures were prepared, des...

Full description

Published in: ACS Applied Materials & Interfaces
ISSN: 1944-8244 1944-8252
Published: American Chemical Society (ACS) 2024
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa68302
Abstract: This study shows the multistep synthesis of a series of Tröger’s base polymers of intrinsic microporosity (TB-PIMs) based on a hexaphenylbenzene (HPB) core, with a focus on evaluating their thermal stability, porosity, and CO2 capture performance. Both ladder and linear structures were prepared, designed to feature tunable nitrogen content and porosity. Our findings demonstrate that polymers with higher nitrogen content, such as tetra-TB-HPB, exhibit superior CO2 affinity and selectivity, attributed to enhanced interactions with CO2 and optimized micropore sizes. Linear TB-polymers 1 and 2 are also made for comparison and show competitive performance in carbon capture, suggesting that cost-effective, simpler-to-synthesize materials can achieve efficient gas separation. The study reveals that increased porosity significantly enhances CO2 capacity and selectivity, particularly in networked TB-HPB-PIMs with high surface areas and narrow micropores, achieving values up to 544 m2 g–1, CO2 uptake of 2.00 mmol g–1, and CO2/N2 selectivity of 45.6. The thermal properties of these materials, assessed via thermogravimetric analysis (TGA), show that TB-HPB-PIMs maintain robust thermal stability in nitrogen atmosphere, with tetra- and hexa-TB-HPBs leading the series. However, in oxidative environments, denser polymers such as TB-HPB and linear TB-polymer 1 demonstrate higher performance, likely due to restricted air diffusion. Overall, our findings highlight the critical need to balance porosity and thermal stability in TB-HPB-PIMs for applications in gas separation, carbon capture, and the potential for these polymers as flame retardant materials. Tetra-TB-HPB stands out as the most promising material for CO2 capture and thermal stability under inert conditions, while denser polymers like TB-HPB offer superior performance in oxidative environments.
Keywords: Hexaphenylbenzene, Tröger’s base, PIMs, flame retardants, gas adsorption, carbon capture
College: Faculty of Science and Engineering
Funders: Dr M.C., Dr A.R.A. and Y.W. gratefully acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC), Grant number: EP/T007362/1 “Novel polymers of intrinsic microporosity for heterogeneous base-catalysed reactions (HBC-PIMs)” and Swansea University. Dr M.C. and Dr C.G.B gratefully acknowledge UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee [grant number 10083164] associated with DAM4CO2 (Double-Active Membranes for a sustainable CO2 cycle; HORIZON-EIC-2022-PATHFINDERCHALLENGES-01-Number: 101115488).