Journal article 209 views 117 downloads
Predicting financial distress using multimodal data: An attentive and regularized deep learning method
Information Processing and Management, Volume: 61, Issue: 4, Start page: 103703
Swansea University Author: Mohammad Abedin
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (1.78MB)
DOI (Published version): 10.1016/j.ipm.2024.103703
Abstract
Predicting financial distress using multimodal data: An attentive and regularized deep learning method
Published in: | Information Processing and Management |
---|---|
ISSN: | 0306-4573 |
Published: |
Elsevier BV
2024
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65837 |
first_indexed |
2024-03-14T08:48:51Z |
---|---|
last_indexed |
2024-11-25T14:16:58Z |
id |
cronfa65837 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-04-18T15:46:11.3375594</datestamp><bib-version>v2</bib-version><id>65837</id><entry>2024-03-14</entry><title>Predicting financial distress using multimodal data: An attentive and regularized deep learning method</title><swanseaauthors><author><sid>4ed8c020eae0c9bec4f5d9495d86d415</sid><ORCID>0000-0002-4688-0619</ORCID><firstname>Mohammad</firstname><surname>Abedin</surname><name>Mohammad Abedin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-03-14</date><deptcode>CBAE</deptcode><abstract/><type>Journal Article</type><journal>Information Processing and Management</journal><volume>61</volume><journalNumber>4</journalNumber><paginationStart>103703</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0306-4573</issnPrint><issnElectronic/><keywords>Financial distress prediction; Multimodal data; Deep learning; Attention mechanism; Conditional entropy</keywords><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-07-01</publishedDate><doi>10.1016/j.ipm.2024.103703</doi><url/><notes/><college>COLLEGE NANME</college><department>Management School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CBAE</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>This work was supported by the National Natural Science Foundation of China (grants 72271073 and 72101073), and the University Synergy Innovation Program of Anhui Province (grant GXXT-2023-063).</funders><projectreference/><lastEdited>2024-04-18T15:46:11.3375594</lastEdited><Created>2024-03-14T08:46:14.2730113</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Accounting and Finance</level></path><authors><author><firstname>Wanliu</firstname><surname>Che</surname><order>1</order></author><author><firstname>Zhao</firstname><surname>Wang</surname><orcid>0000-0002-3352-3655</orcid><order>2</order></author><author><firstname>Cuiqing</firstname><surname>Jiang</surname><orcid>0000-0001-6492-4550</orcid><order>3</order></author><author><firstname>Mohammad</firstname><surname>Abedin</surname><orcid>0000-0002-4688-0619</orcid><order>4</order></author></authors><documents><document><filename>65837__30061__5e424b2f4f7b4de89408bbef9d89ae8b.pdf</filename><originalFilename>65837_AAM.pdf</originalFilename><uploaded>2024-04-18T15:13:29.7570830</uploaded><type>Output</type><contentLength>1871027</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-04-18T15:46:11.3375594 v2 65837 2024-03-14 Predicting financial distress using multimodal data: An attentive and regularized deep learning method 4ed8c020eae0c9bec4f5d9495d86d415 0000-0002-4688-0619 Mohammad Abedin Mohammad Abedin true false 2024-03-14 CBAE Journal Article Information Processing and Management 61 4 103703 Elsevier BV 0306-4573 Financial distress prediction; Multimodal data; Deep learning; Attention mechanism; Conditional entropy 1 7 2024 2024-07-01 10.1016/j.ipm.2024.103703 COLLEGE NANME Management School COLLEGE CODE CBAE Swansea University This work was supported by the National Natural Science Foundation of China (grants 72271073 and 72101073), and the University Synergy Innovation Program of Anhui Province (grant GXXT-2023-063). 2024-04-18T15:46:11.3375594 2024-03-14T08:46:14.2730113 Faculty of Humanities and Social Sciences School of Management - Accounting and Finance Wanliu Che 1 Zhao Wang 0000-0002-3352-3655 2 Cuiqing Jiang 0000-0001-6492-4550 3 Mohammad Abedin 0000-0002-4688-0619 4 65837__30061__5e424b2f4f7b4de89408bbef9d89ae8b.pdf 65837_AAM.pdf 2024-04-18T15:13:29.7570830 Output 1871027 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/ |
title |
Predicting financial distress using multimodal data: An attentive and regularized deep learning method |
spellingShingle |
Predicting financial distress using multimodal data: An attentive and regularized deep learning method Mohammad Abedin |
title_short |
Predicting financial distress using multimodal data: An attentive and regularized deep learning method |
title_full |
Predicting financial distress using multimodal data: An attentive and regularized deep learning method |
title_fullStr |
Predicting financial distress using multimodal data: An attentive and regularized deep learning method |
title_full_unstemmed |
Predicting financial distress using multimodal data: An attentive and regularized deep learning method |
title_sort |
Predicting financial distress using multimodal data: An attentive and regularized deep learning method |
author_id_str_mv |
4ed8c020eae0c9bec4f5d9495d86d415 |
author_id_fullname_str_mv |
4ed8c020eae0c9bec4f5d9495d86d415_***_Mohammad Abedin |
author |
Mohammad Abedin |
author2 |
Wanliu Che Zhao Wang Cuiqing Jiang Mohammad Abedin |
format |
Journal article |
container_title |
Information Processing and Management |
container_volume |
61 |
container_issue |
4 |
container_start_page |
103703 |
publishDate |
2024 |
institution |
Swansea University |
issn |
0306-4573 |
doi_str_mv |
10.1016/j.ipm.2024.103703 |
publisher |
Elsevier BV |
college_str |
Faculty of Humanities and Social Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
hierarchy_top_title |
Faculty of Humanities and Social Sciences |
hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
department_str |
School of Management - Accounting and Finance{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Accounting and Finance |
document_store_str |
1 |
active_str |
0 |
published_date |
2024-07-01T02:46:51Z |
_version_ |
1821371910585319424 |
score |
11.04748 |