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Abstract 

The proliferation of multimodal data provides a valuable repository of information for financial distress 

prediction. However, the use of multimodal data faces critical challenges, such as heterogeneity within and 

among modalities and difficulties in discriminating complementary and redundant information among 

modalities. To this end, we propose an attentive and regularized deep learning method for predicting 

financial distress using multimodal data, including financial indicators, current reports, and interfirm 

networks. Specifically, considering heterogeneity within and among modalities, we design three modality-

specific attentions, i.e., ratio-aware, report-aware, and neighbor-aware attentions, for adaptively extracting 

key information from financial indicators, current reports, and interfirm networks, respectively. Considering 

difficulties in discriminating complementary and redundant information among modalities, we design a 

conditional entropy-based regularization to guide the method focusing on complementary information 

while discarding redundant information during modality fusion. We also propose the use of focal loss to 

address the class imbalance problem. Empirical evaluation shows that the proposed method significantly 

outperformed all benchmarked methods in terms of predictive and representation performance. We also 

provide key findings and implications for stakeholders. 
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1. Introduction 

Financial distress refers to the inability of a company to meet its financial obligations due to 

insufficient revenues. Getting into financial distress affects a variety of different businesses with a severe 

negative impact on companies and may further lead to a variety of adverse consequences, such as 

investment loss, unemployment, and even government deficits (Wang et al., 2021). Financial distress 

prediction (FDP), as an effective tool to identify early warning signals of financial distress, is of great 

concern to company managers and investors in financial risk management. 

The availability of multimodal data is reshaping the paradigm of FDP. Financial indicators, while 

playing a dominant role in FDP by reflecting a company’s profitability, solvency, and liquidity (Xu et al., 

2022; Zhang et al., 2022), only provide a snapshot of the company’s financial position in the past year, 

which may not be sufficient to depict a comprehensive portrait (Kou et al., 2021). With the prevalence of 

digitalization technologies, multimodal data, exemplified by current reports (also known as 8-K filings) – 

a form of textual data, and interfirm networks – a form of network data, is becoming available online, 

providing important supplements to financial indicators. Current reports provide information on the 

occurrence of statutory material events of a company, enriching characterization of a company from the 

operational perspective (Jiang et al., 2022a). Interfirm networks present the influences from neighbor 

companies1 that could continue on the target company, enriching characterization of a company from the 

relational perspective (Tobback et al., 2017). Financial indicators (numeric modality), current reports 

(textual modality), and interfirm networks (network modality) conjunctively and comprehensively 

characterize a company’s financial status. Therefore, we focus on leveraging multimodal data for FDP in 

this study. 

Predicting financial distress using multimodal data poses great challenges in terms of modality 

representation and modality fusion. For modality representation, feature utilities within modality are 

 

1 Neighbor companies refer to the companies that are connected to a target company within a relational network. 
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heterogeneous and such heterogeneity may even vary across observations, e.g., a same feature may present 

different utilities for predicting the financial distress of different companies. How to explicitly and 

adaptively extract key information from each modality is challenging. For modality fusion, multimodal data 

is generally complementary (i.e., unique information in each modality), but inevitably redundant (i.e., same 

information whereas in form of different modalities). For example, when a material corporate event occurs, 

like an acquisition, the deal terms and expected impacts are disclosed in detail in current reports. Meanwhile, 

these impacts may also be reflected in corresponding changes in financial indicators and interfirm networks. 

Complementary information contributes to performance improvement of FDP, whereas redundant 

information usually leads to adverse effects such as overfitting and predictive bias (Cui and Li, 2022). How 

to guide the modeling process to focus on learning complementary information while discarding redundant 

information is another challenge. Besides, the number of financially distressed companies is much less than 

that of normally operated companies in practice, and such class imbalance problem may adversely affect 

prediction performance. 

To address these challenges, we propose a novel multimodal deep learning method, called attentive 

and regularized deep learning (ARDL), to leverage multimodal data for FDP. Specifically, to address the 

challenge of heterogeneous utilities of features in each modality, we design three attention modules (i.e., 

ratio-aware, report-aware, and neighbor-aware attentions) for generating effective representations for 

financial indicators, current reports, and interfirm networks, respectively. To address the challenge of 

information redundancy among modalities, we design a novel conditional entropy-based regularization to 

filter out the redundant information while maintaining complementary information during modality fusion 

based on the conditional entropy maximization principle. Besides, we propose the use of focal loss to 

address the notable class imbalance problem in FDP. With these design artifacts, ARDL could leverage 

multimodal data in a more meticulous manner, i.e., not only attentive to important information within 

modalities but also capable of refining unique information among modalities, leading to better predictive 

performance. 

We have evaluated the proposed method using a multimodal dataset of Chinese companies in the 
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National Equities Exchange and Quotations (NEEQ) market. We compared ARDL with ten representative 

machine learning and deep learning methods. Empirical evaluation shows that ARDL significantly 

outperformed the benchmarked methods in terms of predictive performance, and its representation 

performance was superior to the benchmarked deep learning methods. The results also show that the 

combination of multiple modalities for FDP not always yields improved performance unless the key 

information within and among modalities is effectively extracted. Ablation study demonstrates that each 

design artifact of ARDL contributes to performance improvement. Interpretation analysis on attention 

weights illustrates how each feature within each modality differentially worked for FDP. Sensitivity 

analysis reveals how the regularization parameter effect the performance of ARDL. Robustness tests show 

that the effectiveness of ARDL is not affected by dataset selection and data diversity. We also provide the 

key findings and implications. 

This study makes three contributions to the information processing and risk management domain. First, 

to our knowledge, this is the first study that integrates financial indicators, current reports, and interfirm 

networks information for predicting financial distress while considering the intra-modality importance and 

the inter-modality heterogeneity, as well as the complementarity and redundancy of modality information. 

We provide clear evidence that multimodal data provides more useful information for accurately predicting 

financial distress. We also uncover the existence of complementarity and redundancy among the 

information obtained from multiple modalities, both theoretically and empirically, providing the 

groundwork for future research. Second, we initialize a new way of multimodal data modeling by proposing 

ARDL. In contrast to the existing multimodal learning methods that primarily concentrate on identifying 

key information (e.g., using attentions) while overlooking the redundancy among modalities, ARDL 

introduces “extracting key information within modalities–extracting unique information among modalities–

fusing information from multiple modalities” routine. This novel routine can explicitly extract essential and 

distinct knowledge from multimodal data. Third, we provide practically valuable insights for stakeholders 

that utilize multimodal data and AI tools for financial risk management. With the identified key factors from 

financial indicators, current reports, and interfirm networks, stakeholders could better understand the 
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signals indicating financial distress and takeover the AI tools. 

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature about 

financial distress and identifies the research gaps. Section 3 presents the details of our proposed ARDL 

model. We describe the empirical evaluation in Section 4 and report on the results in Section 5. Finally, we 

conclude our work in Section 6. 

2. Literature Review 

2.1 Predictors in Financial Distress Prediction 

Financial distress prediction has drawn considerable attention from various communities such as 

finance and information science. Much literature has constructed multiple predictors for financial distress 

from the financial indicators, e.g., profitability, debt paying ability, and development ability. These financial 

indicators, which can directly provide insights into understanding the financial position of a company, are 

conventionally and continually used in FDP (Wang et al., 2021). Their effectiveness has been demonstrated 

by numerous studies (e.g., Li et al., 2021; Medina-Olivares et al., 2022). Nazareth and Ramana Reddy 

(2023) reviewed research on FDP and found that both previous and most existing studies relied solely on 

financial indicators as financial distress predictors. 

With the flouring of digital technologies, various types of data (e.g., texts and networks) can be stored 

and accessed by companies, providing a variety of valuable sources of information for enhancing FDP 

performance. Text information reveals linguistic meaning through text and is universally regarded as a 

special type of repository for financial distress (Wang et al., 2021). Most studies have focused their efforts 

on company self-disclosure texts, such as annual reports, auditor reports, and current reports. These reports 

can provide valuable insights into a company’s future performance (Wang et al., 2020). However, annual 

reports and auditor reports, which are often disclosed alongside the financial indicators, significantly 

overlap in content (Borchert et al., 2023). Current reports are another type of required disclosure document, 

notifying the public of important and emergency events occurring in the business’s operations. Jiang et al. 

(2022a) extracted semantic features from current reports to predict financial distress and found that these 

features provide valuable clues about the existence of financial distress. 
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In addition to using textual information for FDP, another stream of research focuses on interfirm 

networks, i.e., exploiting the potential indicators from neighbor companies to enhance FDP performance. 

Long et al. (2022) constructed an interfirm network based on the relationship of sharing directors, 

supervisors, and senior management and demonstrated that incorporating relational information into credit 

risk assessment can improve predictive performance. Tobback et al. (2017) also found that integrating 

relational features is more effective in detecting high-risk companies, highlighting the significance of 

interfirm networks in FDP. In summary, the research shows financial indicators, current reports, and 

interfirm network data can all be effectively utilized for FDP. 

2.2 Methods for Financial Distress Prediction 

Both statistical and machine learning methods have been applied to FDP. Statistical methods were 

used earlier for building FDP models, such as discriminant analysis, logit regression analysis, and factor 

analysis, owing to their strong interpretability and easy-to-use characteristics (Iyer et al., 2016). Recently, 

machine learning models have been more widely used in FDP, including decision tree (DT) (Schmid et al., 

2023), logistic regression (LR) (Dastile et al., 2020), support vector machines (SVM) (Sun et al., 2021), 

artificial neural networks (ANN) (Fu et al., 2020), and ensemble models, such as gradient boosting decision 

tree (GBDT) (Qian et al., 2022), eXtreme gradient boosting (XGB) (Xia et al., 2017) and LightGBM (Zhang 

et al., 2022). For instance, Geng et al. (2015) used DT, SVM, and ANN to develop FDP models based on 

31 financial indicators, and found that ANN outperformed other models. Sun et al. (2021) enhanced SVM 

by integrating decomposition and fusion methods, leading to improved predictive performance in FDP. 

Unfortunately, these statistical and machine learning methods face great challenges when dealing with 

high-dimension data with varying inherent properties, especially in the case of multimodal data. Deep 

learning methods, armed with their remarkable learning capability, have begun to catch up and provided 

great potential value in multimodal fusion. For example, Jiang et al. (2022b) introduced a deep financial 

distress prediction method to model corporate financial distress based on financial indicators and interfirm 

networks. Kraus and Feuerriegel (2017) combined both financial indicators and current reports with deep 

neural networks and obtained an integrated multimodal representation for financial decision support, 
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achieving outstanding performance. Inspired by these efforts, we aim to design a deep learning model for 

effectively leveraging multimodal data for FDP. 

Besides, class imbalance has always been an inevitable problem that may jeopardize the prediction 

performance (Sun et al., 2020). However, previous studies on FDP either directly ignored the impact of 

class imbalance or constructed balanced samples (e.g., through oversampling or undersampling) (Nazareth 

and Ramana Reddy, 2023). The former cannot reflect the real status of the financial market, while the latter 

damages the original data distribution. This has motivated us to address the class imbalance problem in 

FDP while preserving the original data distribution. 

2.3 Multimodal Modeling 

Multimodal modeling commonly involves two main components: modality representation and 

modality fusion. Modality representation refers to the transformation of raw data input from each modality 

into a dense vector representation that can characterize the intrinsic attributes and patterns. For example, 

Wang et al. (2020) separately modeled financial and textual modalities to represent original data for FDP. 

The financial representation was constructed using the numeric financial ratios in a well-structure format, 

while textual representation was generated using a combination of lexicon-based techniques and the bag of 

words method. Beaver et al. (2019) generated a network representation by constructing an interfirm network 

based on group affiliation data and using financial ratios as financial representation for default prediction. 

Although these studies treated each modality as an independent encoding, most of them ignored the intra-

modal importance, which is a key factor affecting the final prediction performance. In FDP, Matin et al. 

(2019) employed the attention mechanisms on textual modality by endowing different attentions at the word 

and sentence level, enhancing the predictive ability and interpretability of textual modality. However, they 

only applied attention mechanisms on unimodal data, ignoring the heterogeneity among multiple modalities. 

Besides, no prior studies have focused on the modal-specific attention mechanisms in FDP, which motivates 

us to design modal-specific attention mechanisms, not only detecting companies that will be at risk but also 

helping to understand why companies will be at risk. 
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Following the modality fusion paradigm, multimodal methods are mainly divided into two categories: 

early fusion (feature-level fusion) and late fusion (decision-level fusion) (LeCun et al., 2015). Early fusion-

based methods extract multimodal features using specific subnetworks and then perform fusion at the 

feature level through various techniques such as concatenation, summation, and attention mechanisms. For 

example, Borchert et al. (2023) achieved multimodal fusion by concatenating the financial and textual 

features extracted by the specific subnetworks, whereas Yang et al. (2021) used the fusion technique of 

summation to combine the textual and visual features. These techniques are easy to use but may yield 

unstable results (Lu et al., 2023; Yang et al., 2023). Modality fusion based on attention mechanisms assigns 

weights to features through their distinct importance and can further interpret certain feature impacts by 

visualizing attention weights. For example, the attention-fused network (e.g., RCMA, Wang et al., 2023 

and NIGCM, Jiang, et al., 2022b) fuse financial and textual (or network) features extracted by specific 

subnetworks by designing different attention-fused blocks, yielding improved predictive performance and 

more interpretability. Late fusion-based methods independently predict a result for each modality and then 

combine them using techniques such as weighing or voting. In the late fusion methods, multimodal fusion 

representation is limited by the absence of cross-modality interactions among the data. Although the early 

fusion methods are by far the most commonly used, they either ignore the redundant information or 

simultaneously diminish the complementary and redundant effects. This limitation has inspired us to 

develop a novel multimodal fusion method that not only filter out the redundant information but also retain 

complementary information during modality fusion, thus enhancing the performance of multimodal 

learning in FDP. 

2.4 Research Gaps 

Multimodal data-based FDP has gained significant attention, and Table 1 summarizes representative 

studies in terms of the use of modalities, modality representation, and modality fusion. From the perspective 

of modality, while previous studies have mostly focused on using either textual modality or network 

modality for FDP, as a supplement to financial indicators (i.e., numeric modality), no research has yet been 

dedicated to exploring the combined power of numeric, textual, and network modalities for FDP. Moreover, 
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utilizing these modalities entails several challenges, such as intra-modality importance and inter-modality 

heterogeneity, as well as the complementarity and redundancy of modality information as mentioned in 

Table 1. From the perspective of multimodal modeling, modality representation and modality fusion are 

crucial components that drive performance. For modality representation, while previous studies have 

focused on unimodal or bimodal representation, how to effectively generate representations considering 

both the inter-modal heterogeneity and intra-modal importance is still challenging. For modality fusion, 

attention, with its ability to adaptively identify key information during modality fusion, has always been 

the go-to approach. However, the attention mechanism simultaneously amplifies (diminishes) the 

complementary and redundant effects, e.g., a high attention weight intensifies the presence of both 

discriminative information and useless information. How to guide the modeling process in a way of 

focusing on learning complementary information while discarding redundant information is also 

challenging. We strive to bridge these gaps by proposing an attentive and regularized deep learning method. 

Table 1. Representative Studies on FDP Using Multimodal Data. 

Study 

Use of 

numeric 

modality 

Use of 

textual 

modality 

Use of 

network 

modality 

Modality representation Modality fusion 

Inter-modal 

heterogeneity 

Intra-modal 

importance 

Information 

complementary 

Information 

redundancy 

Geng et al. 

(2015) 
√       

Chen et al. 

(2016) 
√       

Tobback et 

al. (2017) 
√  √   √  

Matin et al. 

(2019) 
√ √   √ √  

Beaver et al. 

(2019) 
√  √ √  √  

Yıldırım et 

al. (2021) 
√  √   √  

 Li et al. 

(2021) 
√ √  √  √  

Lee et al. 

(2021) 
√  √   √  

Jiang et al. 

(2022a) 
√ √    √  

Wang et al. 

(2023) 
√ √  √ √ √  

This study √ √ √ √ √ √ √ 
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3. Proposed Method 

Given the immense potential of multimodal data, represented by financial indicators, current reports, 

and interfirm networks, for improving the performance of FDP, and the lack of a promising solution for 

effectively leveraging multimodal data in terms of tackling heterogeneity within and among modalities and 

tradeoff between complementarity and redundancy among modalities, we propose an attentive and 

regularized deep learning method (ARDL) for FDP. The idea behind ARDL lies in bringing financial 

indicators, current reports, and interfirm networks into a unified deep learning framework following the 

“extracting key information within modalities–extracting unique information among modalities–fusing 

information from multiple modalities” routine. With the tailored components, namely modality-specific 

attentions and conditional entropy-based regularization (will be discussed later), ARDL allows to explicitly 

and adaptively extract key information within each modality and alleviate information redundancy during 

multimodal fusion, contributing to prediction performance improvement. 

 
Figure 1. Framework of ARDL. 
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3.1. Overview of ARDL 

Figure 1 illustrates the framework of ARDL. Given the multimodal data, ARDL consists of three parts: 

modality representation, modality fusion, and risk prediction. In the part of modality representation, we 

design three modality-specific attention modules, i.e., ratio-aware, report-aware, and neighbor-aware 

attentions, to generate effective representations for financial indicators, current reports, and interfirm 

networks, respectively. In the part of modality fusion, we design a novel conditional entropy-based 

regularization and incorporate it into the loss function of ARDL. By minimizing this regularization, 

redundant information among modalities can be effectively reduced, while simultaneously encouraging the 

preservation of unique information from different modalities. In the part of risk prediction, considering the 

class imbalance problem (i.e., financially distressed companies account for a small proportion), we 

introduce the focal loss (Lin et al., 2020) to the loss function. 

3.2. Attentive Modality Representation 

For financial representation, given that different financial ratios naturally reflect various aspects of 

financial position (e.g., profitability, solvency, development capability, operational capabilities, and finance 

structure), we categorized them into distinct ratio groups to generate a joint effect for prediction. Table 2 

summarizes five different types of ratio groups along with their representative ratios in FDP. Obviously, the 

contribution of different ratio groups varies for FDP, and the distinct predictive power of each ratio group 

need to be emphasized. Hence, the ratio-aware attention is designed to explicitly identify the distinct 

importance of each ratio group. Unlike traditional attention mechanisms that are directly applied to 

individual ratios, ratio-aware attention is applied at the group level, assigning a distinct attention weight to 

each group. This helps to reduce the impact of individual less informative ratios. Furthermore, by grouping 

ratios based on their financial meaning, ratio-aware attention facilitates incorporating domain knowledge 

and provides a clearer organizational structure, thereby enhancing the model’s interpretability. 

Table 2. Ratio Groups in Financial Indicators. 

Category Contents Ratio Group 

Profitability 

Return on assets, Return on equity, Net profit ratio, Net 

profit to current asset, Net profit to fixed asset, Ebit to 

asset 

G1 



 

12 

 

Solvency 

Current ratio, Quick ratio, Asset liability ratio, Debt 

equity ratio, Debt tangible equity ratio, Current liability 

coverage 

G2 

Development capacity 

Operating revenue growth rate, Net profit growth rate, 

Assets growth rate, Net operating cash flow growth rate, 

Operation cash per share growth rate, Equity growth rate 

G3 

Operational capabilities 

Inventory turning rate, Receivable turnover ratio, Accrued 

payable rate, Equity rate, Net operating cycle, Working 

capital total rate 

G4 

Finance structure 

Current asset ratio, Fixed asset ratio, Equity to fixed asset 

ratio, Current liability ratio, Equity ratio, Working capital 

to equity 

G5 

 

Ratio-aware attention for financial representation. We represent the ratio groups as 𝑹 =

[𝒓1, 𝒓2, … , 𝒓𝑔], where 𝑔 refers to the total number of ratio groups. To emphasize their distinct contributions, 

we incorporate an attention mechanism into the ratio groups. Attention is a prevalent weight learning 

scheme aimed to assign and optimize a set of weights that correspond to the input elements, endowing 

neural networks with the ability to focus more on the salient elements (Dikmen and Burns, 2022). The 

general process of attention mechanism can be described as mapping a query and a set of key-value pairs 

to an output, in which the query, key, and value are represented as vectors (Vaswani et al., 2017). For each 

input ratio group, ratio-aware attention assigns it a trainable query vector 𝒖𝑓 , aimed at capturing the 

relevance between the current ratio group and the other groups. The same ratio group acts as the key-value 

pairs to enhance interpretability (Yang et al., 2021). During the training process, each ratio group is matched 

with the query vector to produce the importance weight 𝛼𝑓via a softmax function: 

𝛼𝑖
𝑓

=
exp(𝒖𝑓

T𝒓𝑖)

∑ exp(𝒖𝑓
T𝒓𝑖)

𝑔
𝑖=1

(1) 

where 𝒖𝑓 is initially randomized and subsequently optimized during the training process.  

The financial representation 𝑴𝑓 = {𝑀1
𝑓

, 𝑀2
𝑓

, … , 𝑀𝑑𝑓

𝑓
}, with the representation dimensionality at 𝑑𝑓, is 

then generated using merged ratio group and a multilayer perceptron (MLP) as follows: 

𝑴𝑓 = MLP (∑ 𝛼𝑖
𝑓

𝒓𝑖

𝑔

𝑖=1
) (2) 

where MLP(∙)  denotes an MLP layer. While directly using the merged ratio group as the financial 
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representation seems straightforward, the underlying predictive signals within the ratio groups would 

remain untapped without deeper processing. By applying an MLP encoder on the merged ratio group, we 

enable the model to derive a more informative and diversified representation. The benefits stem from MLP’s 

exceptional capacity to capture intricate nonlinear patterns and multidimensional relationships embedded 

within the structured data (Gorishniy et al., 2022). 

For textual representation, considering that current reports encompass diverse descriptions of material 

events with various semantic and syntactic relationships and are presented in a sequential manner (Jiang et 

al., 2022a), we initially employ a pre-trained language model named BERT (i.e., Bidirectional Encoder 

Representations from Transformers), which has achieved remarkable success in natural language 

processing (Devlin et al., 2018), to get document embeddings. Then, recognizing that these document 

embeddings inherently maintain a sequential structure, we adopt a Gate Recurrent Unit (GRU) network. 

GRU possesses a distinctive advantage in handling sequential data, enabling it to capture the temporal 

relationships among reports for more in-depth representations (Fan and Ilk, 2020). The GRU network can 

effectively accommodate time dependencies of document embeddings, ensuring that the information from 

the previous sequence is retained when integrating a series of sequences for prediction. However, since 

each report reflects a distinctive material event and contributes differently to the prediction, relying solely 

on GRU is insufficient. Hence, we design the report-aware attention on current reports, which incorporates 

an attention mechanism into GRU to explicitly emphasize important reports, and thus generate the final 

textual representation. The processes are detailed as follows. 

To extract document embedding vectors of the current reports, we map each report into BERT and 

derive its document embedding from the final hidden state of the [CLS] token in BERT, thereby obtaining 

the embedding matrix 𝑬 = [𝒆1, 𝒆2, … , 𝒆𝐽] ∈ ℝ𝑑𝑒×𝐽 for all current reports of a company, where 𝑑𝑒 is the 

dimensionality of the BERT embeddings and 𝐽 is the total number of reports. 

Report-aware attention for textual representation. Given the obtained document embedding of 

each report, GRU is employed to extract deep representations by exploring the temporal relationships 
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among all the document embeddings. A GRU unit comprises two gates (reset and update gates) and a hidden 

state. These gates regulate the flow of information through the unit. The reset gate determines which 

information from the previous timestep should be forgotten, and the update gate decides how much of the 

new input should be incorporated. The hidden state captures the current state of the unit. The detailed 

processes of these two gates are as follows: 

𝒓𝑗 = sigmoid(𝑾𝑟 ∙ [𝒉𝑗−1, 𝒆𝑗] + 𝒃𝑟) (3) 

𝒛𝑗 = sigmoid(𝑾𝑧 ∙ [𝒉𝑗−1, 𝒆𝑗] + 𝒃𝑧) (4) 

�̂�𝑗  = tanh(𝑾ℎ ∙ [𝒓𝑗 ⊗ 𝒉𝑗−1, 𝒆𝑗] + 𝒃ℎ) (5) 

𝒉𝑗 = (1 − 𝒛𝑗) ⊗ 𝒉𝑗−1 + 𝒛𝑗 ⊗ �̂�𝑗 (6) 

where 𝑾𝑟, 𝑾𝑧, and 𝑾ℎ are the weight matrices of reset gate, update gate, and hidden state, respectively. 

𝒃𝑟, 𝒃𝑧, and 𝒃ℎ are the corresponding bias vectors. 𝒉𝑗 is the 𝑗-th output state of the hidden layers of GRU. 

By taking these output states from each timestep of the GRU, we obtain the textual embedding 𝑯 =

[𝒉1, 𝒉2, … , 𝒉𝐽] ∈ ℝ𝑑ℎ×𝐽, where 𝑑ℎ is the dimensionality of the textual embedding. 

Next, an attention mechanism is introduced to highlight these reports that are informative in revealing 

financial distress. Compared with traditional attention mechanisms applied in the GRU layer, report-aware 

attention maintains a similar structural setup. However, the key innovation lies in its direct application to 

the output of the GRU hidden states, eliminating the requirement for transforming the initial output. This 

approach offers the advantage of better capturing the correlations and temporal patterns of different time 

steps within the report sequence, while also reducing model parameters and computational complexity. 

Specifically, for each output state of the current reports, report-aware attention assigns it a trainable query 

vector 𝒖𝑡 to capture the relevance between the current state and other states in the sequence. The same 

output state acts as the key-value pairs to improve interpretability. During the training process, each state is 

matched with the query vector to produce the importance weight 𝛼𝑡 via a softmax function: 

𝛼𝑗
𝑡 =

exp(𝒖𝑡
T𝒉𝑗)

∑ exp(𝒖𝑡
T𝒉𝑗)

𝐽
𝑗=1

(7) 
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The textual representation 𝑴𝑡  = {𝑀1
𝑡 , 𝑀2

𝑡 , … , 𝑀𝑑𝑡

𝑡 }  for all current reports of a company can be 

obtained by a weighted sum of the output states of the GRU in Eq. (8), where 𝑑𝑡 refers to the dimensionality 

of the textual representation. 

𝑴𝑡 = ∑ 𝛼𝑗
𝑡𝒉𝑗

𝐽

𝑗=1
(8) 

Interfirm networks are a type of relational graph characterized by various relationships and 

interdependencies between companies (Bi et al., 2022; Topuz et al., 2021). As for representing networks, 

since different neighbor companies have distinct attribute information, directly aggregating neighbor 

information without considering their individualized impacts inevitably weakens the contributions of the 

more influential neighbors to the prediction. Hence, we design the neighbor-aware attention to adaptively 

aggregate information from neighboring nodes, emphasizing those with a stronger influence for the network 

representation. The processes are detailed as follows. 

To quantify the influence of a company’s immediate neighbors, our method first generates an 

undirected graph 𝐺 = (𝐴, 𝑆) to model the interdependent relationships among companies. In 𝐺, the variable 

𝐴 = 𝐾 ∪ 𝑄 represents the node set involving 𝐾 and 𝑄 separately, as the set of target companies and their 

corresponding neighbor companies. The variable 𝑆 = {(𝐹𝑘 , 𝐹𝑞)|𝐹𝑘 ∈ 𝐾, 𝐹𝑞 ∈  𝑄} is the edge set, each of 

which represents the connection between a target company 𝐹𝑘 and its neighbor company 𝐹𝑞. We denote 𝒐𝑘 

and 𝒐𝑞 as the original node attributes of 𝐹𝑘 and 𝐹𝑞, respectively. Notably, the target company 𝐹𝑘 may be 

connected to multiple neighbor companies, denoted as 𝑄𝑘 = {𝐹𝑞
(1)

, 𝐹𝑞
(2)

, … , 𝐹𝑞
(𝑉𝑘)

}, with the corresponding 

attribute set 𝑶𝑞 = {𝒐𝑞
(1)

, 𝒐𝑞
(2)

, … , 𝒐𝑞
(𝑉𝑘)

}, where 𝑉𝑘 is the number of neighbor companies of 𝐹𝑘. According 

to the empirical findings of Long et al. (2022), shared directors, supervisors, and senior management (DSS) 

relationships between companies have been identified as the most effective for constructing interfirm 

networks when evaluating credit risk. Accordingly, the interfirm networks in this study were constructed 

based on the DSS relationships. 
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Neighbor-aware attention for network representation. Given the interfirm networks 𝐺, traditional 

deep neural networks encounter significant challenges in capturing the intricate relationships between nodes 

and edges inherent in this type of relational data. Therefore, we employ graph neural network (GNN) as a 

solution. GNN offers a distinctive advantage in modeling both node attributes and connectivity information, 

enabling the network to learn the interaction patterns among companies. Within each GNN layer, two 

crucial functional modules exist: information aggregation (local transition function) and information update 

(local output function). The information aggregation module aggregates attribute information from 

neighboring nodes, while the information update module combines the aggregated information and previous 

node features to generate new representations for each node. However, each neighbor contains distinct 

attribute information, and relying solely on GNN is insufficient for establishing satisfactory node 

representations. One key reason is that GNN-based representation learning lacks explicit modeling of 

distinct neighbors (Ye and Ji, 2021). Hence, we design the neighbor-aware attention in interfirm networks, 

which incorporates the attention mechanism into GNN to explicitly learn the distinct contribution of each 

neighbor. 

Unlike traditional attention mechanisms applied in graphs, neighbor-aware attention introduces a 

novel operation by transposing the embeddings of target nodes and performing element-wise multiplication 

with the tanh-activated embeddings of neighbors. This operation facilitates a more effective understanding 

of the topological structure of each node’s neighborhood and the distribution of node attributes within that 

neighborhood. As a result, neighbor-aware attention enhances the overall capability of the model to capture 

intricate relationships and structural patterns in the relational data. Considering the target company 𝐹𝑘 and 

its 𝑣-th neighbor 𝐹𝑞
(𝑣)

, the detailed process is as follows: 

𝐶𝑘,𝑣 (𝐹𝑘 , 𝐹𝑞
(𝑣)

) = (𝑾𝑘𝒐𝑘)Τtanh (𝑾𝑞
(𝑣)

𝒐𝑞
(𝑣)

) (9) 

where tanh is a nonlinear activation function, and 𝑾𝑘 and 𝑾𝑞
(𝑣)

 are learnable parameters that project the 

original attributes, 𝒐𝑘 and 𝒐𝑞
(𝑣)

, into high-dimensional feature spaces through linear transformation. We use 

the inner product here to compute the attention weights, which reflects the relevance between the two nodes 
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(Vaswani et al., 2017). Thereafter, the softmax function is employed to normalize the attention weights 

across all neighbors, expressed as follows: 

𝛼𝑘,𝑣
𝑛 =

exp (𝐶𝑘,𝑣 (𝐹𝑘 , 𝐹𝑞
(𝑣)

))

∑ exp (𝐶𝑘,𝑣 (𝐹𝑘 , 𝐹𝑞
(𝑣)

))
𝑉𝑘
𝑣=1

(10) 

The network representation for the target company 𝐹𝑘 is then formalized by aggregating information 

from its weighted neighbors as follows: 

𝑴𝑛 = ∑ 𝛼𝑘,𝑣
𝑛

𝑉𝑘

𝑣=1
𝑾𝑞

(𝑣)
𝒐𝑞

(𝑣)
(11) 

Through the above process, we obtain 𝑴𝑛  = {𝑀1
𝑛, 𝑀2

𝑛, … , 𝑀𝑑𝑛

𝑛 } as the network representation that 

explicitly aggregates all neighbors’ information in a differential manner, where 𝑑𝑛  refers to the 

dimensionality of the network representation. 

3.3. Conditional Entropy-Based Regularization 

Having obtained the attentive representations for each modality using the modality-specific attentions, 

we integrate them into a unified multimodal representation for FDP. Common fusion strategies fall into two 

types: simple fusion (e.g., concatenation or summation) and attention-based fusion. Simple fusion, however, 

does not consider both complementarity and redundancy among modalities (Huang et al., 2021). Although 

attention-based fusion assigns modalities different weights according to their importance, it simultaneously 

amplifies or diminishes the complementary and redundant effects based on these weights. Hence, we design 

a conditional entropy-based regularization during modality fusion and incorporate it into the loss function 

of the main network. By minimizing this regularization, redundant information among modalities can be 

effectively reduced and unique information in each modality can be maintained. 

Conditional entropy measures the uncertainty of one random variable given another (Shannon, 1948). 

It quantifies the additional information provided by one variable when the other is known. A higher 

conditional entropy indicates a greater amount of unique information and less redundancy between the 

variables. This naturally leads us to incorporate conditional entropy-guided knowledge into the learning 
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process. By maximizing the conditional entropy of the modality representations, we can minimize 

redundant information within these representations. However, estimating conditional entropy is challenging, 

as the underlying probability distributions are unavailable in practice. Commonly used methods for 

estimating conditional entropy include binning, the nearest-neighbor estimator, and the kernel-based 

estimator (Pichler et al., 2022). Nevertheless, these methods tend to become intractable in high-dimensional 

scenarios and are incompatible with gradient descent-based deep learning methods. Recent works propose 

optimizing the variational bounds of conditional entropy by training neural networks (e.g., Liu et al., 2020; 

Ge et al., 2023), which have shown impressive performance in conditional entropy estimation. Hence, we 

estimate conditional entropy by optimizing its upper-bound with cross-entropy (Shalev et al., 2022). 

Through optimizing the upper-bound of the conditional entropy across the three modality representations, 

we can maximize their conditional entropy, thereby enhancing the generation of complementary 

representations during modality fusion. 

Taking the financial representation 𝑴𝑓  as an example, we elaborate on the estimation of the 

conditional entropy 𝐻(𝑴𝑓|𝑴𝑡, 𝑴𝑛). 

Conditional entropy estimation. The inputs to the conditional entropy estimator include the financial 

representation 𝑴𝑓 and the other two modality representations, 𝑴𝑡 and 𝑴𝑛. Note that 𝑴𝑓, 𝑴𝑡, and 𝑴𝑛 do 

not need to have the same feature dimensions. Eq. (12) formulates the upper-bound for the conditional 

entropy of financial representation, expressed as CE(𝑇𝜃
𝑓

(𝑴𝑓|𝑴𝑡, 𝑴𝑛)). The theoretical proof of this upper-

bound is available in Appendix A. 

𝐻(𝑴𝑓|𝑴𝑡, 𝑴𝑛) ≤ CE(𝑇𝜃
𝑓

(𝑴𝑓|𝑴𝑡, 𝑴𝑛)) (12) 

where the cross-entropy term CE(𝑇𝜃
𝑓

(𝑴𝑓|𝑴𝑡, 𝑴𝑛)) = −𝔼𝑃(𝑴𝑓,𝑴𝑡,𝑴𝑛) log(𝑇𝜃
𝑓

(𝑴𝑓|𝑴𝑡, 𝑴𝑛)) . 𝑇𝜃
𝑓(∙)  is a 

neural network parameterized with 𝜃, trained to approximate the conditional distribution 𝑃(𝑴𝑓|𝑴𝑡 , 𝑴𝑛). 

While the upper-bound of the conditional entropy has strong consistency (Shalev et al., 2022), directly 

estimating the conditional entropy by minimizing the cross-entropy remains challenging, as it requires the 

prior knowledge of 𝑃(𝑴𝑓 , 𝑴𝑡, 𝑴𝑛), which is difficult to obtain in practice. To address this, we employ the 
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entropy chain rule to achieve a more accurate estimation. This approach allows us to represent the 

conditional entropy 𝐻(𝑴𝑓|𝑴𝑡, 𝑴𝑛)  as the sum of a sequence of conditional entropies in Eq. (13). It 

facilitates the training of neural networks in a self-supervised manner and does not require any prior 

knowledge about the underlying distributions of 𝑴𝑓, 𝑴𝑡, or 𝑴𝑛. 

𝐻(𝑴𝑓|𝑴𝑡, 𝑴𝑛) = ∑ 𝐻(𝑀𝑑
𝑓

|𝑴𝑡 , 𝑴𝑛, 𝑴𝑑−1
𝑓

)
𝑑𝑓

𝑑=1
(13)  

where 𝑀𝑑
𝑓
  represents the 𝑑 -th feature in 𝑴𝑓 , 𝑴𝑑−1

𝑓
  represents the first 𝑑 − 1  features in 𝑴𝑓 , and 

𝐻(𝑀1
𝑓

|𝑴𝑡 , 𝑴𝑛, 𝑴0
𝑓

) abbreviates 𝐻(𝑀1
𝑓

|𝑴𝑡 , 𝑴𝑛). 

Building on this idea, we construct a total of 𝑑𝑓 conditional entropy estimators, each represented by a 

neural network 𝑇𝜃𝑑

𝑓
, which is comprised of several fully connected layers with parameters 𝜃𝑑. The inputs 

to the neural networks are composed of the first 𝑑 − 1 features in 𝑴𝑓, along with 𝑴𝑡 and 𝑴𝑛. The output 

is the estimated conditional entropy of the 𝑑-th feature in 𝑴𝑓. 

However, directly estimating the probability distribution of the 𝑑 -th feature in 𝑴𝑓  to infer its 

conditional entropy is challenging due to its unbounded value range. A common solution is to discretize 

continuous features into discrete classes, enhancing the effectiveness of probability distribution estimation 

(González-López et al., 2020). Specifically, within each minibatch, we initially sort the 𝑑-th feature values 

of the financial representations and partition them into predefined bins. These bins, representing intervals 

that cover specific value ranges, can effectively discretize the continuous values. These feature values are 

then transformed into multiple integer classes based on their assigned bins. Finally, one-hot encoding is 

applied to each integer class, converting the integers into a binary representation as the estimated label. 

After the discretization process, the estimated conditional entropy of the 𝑑-th feature in 𝑴𝑓, denoted 

as �̂�(𝑀𝑑
𝑓

|𝑴𝑡 , 𝑴𝑛, 𝑴𝑑−1
𝑓

), can be derived by minimizing the cross-entropy: 

�̂�Θ(𝑀𝑑
𝑓

|𝑴𝑡, 𝑴𝑛, 𝑴𝑑−1
𝑓

) = inf
𝜃𝑑∈Θ

CE (𝑇𝜃𝑑

𝑓
(𝑀𝑑

𝑓
|𝑴𝑡, 𝑴𝑛, 𝑴𝑑−1

𝑓
)) (14) 
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Minimizing the cross-entropy using neural networks allows us to optimize the upper-bound of 

conditional entropy. Given a minibatch samples of size 𝐵, the empirical estimator for this cross-entropy is 

expressed as: 

CÊ(𝑇𝜃𝑑

𝑓
(𝑀𝑑

𝑓
|𝑴𝑡, 𝑴𝑛, 𝑴𝑑−1

𝑓
)) = −

1

𝐵
∑ log (𝑇𝜃𝑑

𝑓
(𝑀𝑖,𝑑

𝑓
|𝑴𝑖

𝑡, 𝑴𝑖
𝑛, 𝑴𝑖,𝑑−1

𝑓
))

𝐵

𝑖=1
(15) 

where 𝑀𝑖,𝑑
𝑓

, 𝑴𝑖
𝑡, 𝑴𝑖

𝑛, and 𝑴𝑖,𝑑−1
𝑓

 individually symbolize the 𝑀𝑑
𝑓
, 𝑴𝑡, 𝑴𝑛, and 𝑴𝑑−1

𝑓
 of the 𝑖-th sample. 

Therefore, the estimated conditional entropy of the financial representation, �̂�(𝑴𝑓|𝑴𝑡 , 𝑴𝑛), can be 

obtained by summing these estimated conditional entropies �̂�(𝑀𝑑
𝑓

|𝑴𝑡 , 𝑴𝑛, 𝑴𝑑−1
𝑓

) , for 𝑑 =  1, … , 𝑑𝑓 . 

Similarly, the estimated conditional entropy of textual and network representations can also be obtained 

using the same estimation scheme, that is �̂�(𝑴𝑡|𝑴𝑓 , 𝑴𝑛) and �̂�(𝑴𝑛|𝑴𝑓 , 𝑴𝑡). 

Conditional entropy-based loss function. The conditional entropy-based loss function consists of 

three parts: 𝐿𝐹|𝑇,𝑁 , 𝐿𝑇|𝐹,𝑁 , and 𝐿𝑁|𝐹,𝑇 . Formally, the conditional entropy-based loss for financial 

representation 𝐿𝐹|𝑇,𝑁 can be expressed as follows: 

𝐿𝐹|𝑇,𝑁 = −
1

𝐵
∑ ∑ log (𝑇𝜃𝑑

𝑓
(𝑀𝑖,𝑑

𝑓
|𝑴𝑖

𝑡, 𝑴𝑖
𝑛, 𝑴𝑖,𝑑−1

𝑓
))

𝑑𝑓

𝑑=1

𝐵

𝑖=1
(16) 

Similarly, the conditional entropy-based losses for the textual and network representations, denoted as 

𝐿𝑇|𝐹,𝑁 and 𝐿𝑁|𝐹,𝑇, are expressed as follows: 

𝐿𝑇|𝐹,𝑁 = −
1

𝐵
∑ ∑ log (𝑇𝜃𝑑

𝑡 (𝑀𝑖,𝑑
𝑡 |𝑴𝑖

𝑓
, 𝑴𝑖

𝑛, 𝑴𝑖,𝑑−1
𝑡 ))

𝑑𝑡

𝑑=1

𝐵

𝑖=1
(17) 

𝐿𝑁|𝐹,𝑇 = −
1

𝐵
∑ ∑ log (𝑇𝜃𝑑

𝑛 (𝑀𝑖,𝑑
𝑛 |𝑴𝑖

𝑓
, 𝑴𝑖

𝑡 , 𝑴𝑖,𝑑−1
𝑛 ))

𝑑𝑛

𝑑=1

𝐵

𝑖=1
(18) 

Therefore, the conditional entropy-based loss 𝐿𝑓𝑢𝑠  for the entire multimodal fusion module is 

computed as the average of 𝐿𝐹|𝑇,𝑁, 𝐿𝑇|𝐹,𝑁, and 𝐿𝑁|𝐹,𝑇: 

𝐿𝑓𝑢𝑠 = (𝐿𝐹|𝑇,𝑁 + 𝐿𝑇|𝐹,𝑁 + 𝐿𝑁|𝐹,𝑇)/3 (19) 

By incorporating the conditional entropy-based loss 𝐿𝑓𝑢𝑠 into the loss function of the main network, 

we introduce a conditional entropy-based regularization term that guides the model to maximize the 
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conditional entropy of modality representations during modality fusion, thereby alleviating redundant 

information. During the training process, the regularization term iteratively optimizes the parameters of the 

conditional entropy estimators using gradient descent: 𝜃𝑑 ← 𝜃𝑑 + ∇̃𝐿𝑓𝑢𝑠(𝜃𝑑). As the conditional entropy 

estimators and the main network are trained together, the estimated loss produced by the conditional entropy 

estimators simultaneously adjusts the parameters (i.e., weight and bias) of the main network, toward the 

generation of modality representations with lower redundancy and greater uniqueness. Through iterative 

parameters optimization to minimize the loss function, the generation of modality representations is 

iteratively enhanced, not only effectively reducing redundant information among modalities, but also 

encouraging the preservation of unique information from different modalities. These enhanced modality 

representations thereby conjunctively contribute to prediction performance improvement. We obtain the 

fused multimodal representation 𝑴𝑐𝑜𝑚𝑏 by concatenating these modality representations. 

3.4. Learning Strategy of ARDL 

Given the substantial challenge of class imbalance in FDP modeling, we address this issue by 

incorporating the focal loss function (Lin et al., 2020), which is a modification of the standard cross-entropy 

loss. Unlike commonly used imbalanced processing methods, for example, oversampling and 

undersampling, which manipulate the original data distribution before training, focal loss addresses this 

issue by adjusting sample weights without distribution change. It can down-weight the influence of easy-

to-clarify samples during training, and gives more attention to hard-to-clarify samples by introducing 

hyperparameters (Lin et al., 2020). By this means, the contribution of hard-to-clarify samples to the loss 

function is enhanced, thereby alleviating the class imbalance problem. 

Subsequently, we employ a fully connected layer with a sigmoid activation function to generate the 

final prediction. The computational formula is expressed as follows: 

�̂� = sigmoid(𝑾𝑐𝑜𝑚𝑏𝑴𝑐𝑜𝑚𝑏 + 𝒃𝑐𝑜𝑚𝑏) (20) 

where �̂� is the predicted probability of the model for the corresponding class label 𝑦. 𝑾𝑐𝑜𝑚𝑏 and 𝒃𝑐𝑜𝑚𝑏 

are the trainable parameters. Accordingly, given the two types of the loss functions, i.e., the focal loss 𝐿𝑓𝑜𝑐𝑎𝑙 
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and the conditional entropy loss 𝐿𝑓𝑢𝑠, the overall loss 𝐿𝐴𝑅𝐷𝐿 is expressed as: 

𝐿𝐴𝑅𝐷𝐿 =  𝐿𝑓𝑜𝑐𝑎𝑙 + 𝜆𝐿𝑓𝑢𝑠 (21) 

where 𝜆 is a tunable parameter greater than 0 that controls the degree of redundancy during modality fusion. 

In a minibatch setting of size 𝐵, the formal description of the focal loss function is expressed as follows: 

𝐿𝑓𝑜𝑐𝑎𝑙 = − ∑ (𝛽(1 − �̂�𝑖)𝛾𝑦𝑖 ln(�̂�𝑖) + (1 − 𝛽)(�̂�𝑖)𝛾(1 − 𝑦𝑖) ln(1 − �̂�𝑖))
𝐵

𝑖=1
(22) 

where 𝛽 is the parameter that balances the distribution of positive and negative samples. 𝛾 is the focusing 

parameter that adjusts the weighting scheme for samples, giving greater weight to hard-to-classify samples 

while lowering the weight of easy-to-classify ones. The pseudocode of ARDL in the training process is 

given in Figure 2. 

Parameters: 𝜆 (redundancy parameter), 𝑏𝑎𝑠 (number of batches), 𝑒𝑝𝑠 (number of epochs). 

Inputs: 𝑹 (ratio groups), 𝑬 (document embeddings), 𝐺 (interfirm networks). 

Initialize the main network and the conditional entropy estimators. 

For epoch ← 1 to 𝑒𝑝𝑠: 

for batch ← 1 to 𝑏𝑎𝑠: 

if textual modality: 

Run a feedforward pass through a GRU based on 𝑬 to get 𝑯. 

Derive merged ratio group using the ratio-aware attention and feed it into an MLP 

layer to obtain financial representation 𝑴𝑓. 

Derive textual representation 𝑴𝑡 using the report-aware attention. 

Derive network representation 𝑴𝑛 using the neighbor-aware attention. 

Compute 𝐿𝐹|𝑇,𝑁 with Eq. (16). 

Compute 𝐿𝑇|𝐹,𝑁 with Eq. (17). 
Compute 𝐿𝑁|𝐹,𝑇 with Eq. (18). 

Compute 𝐿𝑓𝑢𝑠 with Eq. (19). 

Concatenate 𝑴𝑓, 𝑴𝑡, and 𝑴𝑛 and obtain �̂� with Eq. (20). 

Minimize the total loss given in Eq. (21). 

Figure 2. Pseudocode of ARDL. 

4. Empirical Evaluation 

4.1 Data Collection 

To evaluate the effectiveness of our proposed method, we collected a multimodal dataset of companies 

in the NEEQ market of China from 2019 to 2021. The multimodal data of companies in 2019 was used to 

predict whether the companies getting into financial distress in 2021. Following previous studies (e.g., 

Wang et al., 2021; Zhang et al., 2022), we define “financial distress” as a company being given special 

treatment (ST). We excluded companies being ST in 2019 and 2020, resulting in 7,731 samples, including 
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7,366 normally operated companies and 365 companies being ST in 2021 (4.7% financial distress rate). For 

predictors of financial distress, we collected data for three modalities, including financial ratios, current 

reports, and interfirm networks. 

We collected 30 financial ratios in the 2019 annual report of each company from the CSMAR (China 

Security Market Accounting Research) dataset. These financial ratios are widely used and proven to be 

effective for FDP in previous studies (Nazareth & Ramana Reddy, 2023). We divided the financial ratios 

into five groups based on the aspect of financial conditions they reflect, i.e., profitability, solvency, 

development capacity, operational capabilities, and finance structure. The descriptive statistics of these 

financial ratios are available in Appendix B. 

For current reports, we collected all the current reports disclosed by each company from the official 

website of NEEQ2 in 2019, resulting in 289,069 current reports. The mean and standard deviation of the 

number of current reports per company are 37.391 and 20.959, respectively. Considering that some 

companies used images instead of text in their current reports, we utilized Tesseract OCR technology to 

convert images to text. A detailed description and the distribution of current reports among companies are 

available in Appendix B. 

For interfirm networks, we collected information regarding the neighbor companies of the 7,731 

companies in our dataset from Qichacha3 and built interfirm networks. Specifically, we first did a reverse 

lookup on the 7,731 companies to acquire information about their corresponding directors, supervisors, and 

senior management (DSS). We then collected the related companies of these DSS, resulting in 315,490 

neighbor companies of the original 7,731 companies. A detailed description and the descriptive statistics of 

the DSS networks are available in Appendix B. For attributes to characterize each node (i.e., company) in 

DSS networks, we selected demographic attributes (i.e., company age, district, industry type, registered 

capital, number of patents, and percentage of insider ownership), following Long et al. (2022), and further 

 

2 NEEQ website (https://www.neeq.com.cn) offers publicly available information about NEEQ companies in China. 
3 Qichacha (https://www.qcc.com/) is a well-known enterprise information inquiry website in China. 

https://www.neeq.com.cn/disclosure/announcement.html
https://www.qcc.com/
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considered three risk event attributes based on administrative penalties, equity pledges, and loan disputes, 

respectively. The risk event attributes were set to 1 if the company was involved in the corresponding risk 

events in 2019, and 0 otherwise. 

4.2 Experimental Design 

Financial distress prediction is generally treated as a binary classification task, i.e., identifying 

financially distressed companies from normal operation ones (Wang et al., 2021). We evaluated ARDL in 

comparison with benchmarked methods from two families, i.e., machine learning and deep learning. For 

machine learning, we used LR, SVM, XGB, and LightGBM. For deep learning, according to the way of 

using multimodal data, we used concatenation-based multimodal learning (CML) (Ngiam et al., 2011), low-

rank multimodal fusion (LMF) (Liu et al., 2018), gated multimodal unit (GMU) (Du et al., 2022), 

Transformer-based multimodal network (TMN) (Korangi et al., 2023), attentive feature fusion (AFF) (Liu 

et al., 2022), and fine-grained attention network (FGAN) (Wang et al., 2023). Specifically, CML simply 

concatenates representations of all modalities together for prediction; LMF models multimodal interactions 

using tensor factorization; GMU adaptively filters out less important features across modalities using gate 

units; TMN learns intramodal interactions with the self-attention in Transformer encoder; AFF integrates 

multimodal representations using different weights given by the attention module; FGAN considers the 

intramodal and intermodal heterogeneities using fine-grained attentions.  

In addition to predictive performance, we also compared ARDL with the six benchmarked deep 

learning methods in terms of representation performance (Chen et al., 2023). Specifically, we extracted the 

representation in the last layer of each deep learning method (including ARDL) as input features and built 

four types of machine learning methods (i.e., LR, SVM, XGB, and LightGBM). The predictive performance 

of these machine learning methods could therefore reflect the quality of the representation generated by 

each deep learning method. 

To determine the optimal hyperparameters for both ARDL and benchmarked methods, we employed 

nested cross-validation (10-fold split in both inner and outer loops) with grid search for parameter tuning. 

Specifically, we first divided the original dataset into ten folds, with one fold for testing and the remaining 
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nine folds for training. Then, we further divided the training set into ten folds, with one fold as a validation 

set and the remaining nine folds as a reduced training set. Such process was repeated ten times in both inner 

and outer loops. We used average performance (in terms of AUC) over validation sets to select the 

hyperparameters for each method. We performed ten independent nested cross-validations to get a robust 

result. Method implementation and parameter settings are available in Appendix C. 

We selected five metrics for comprehensively gauging the predictive performance of each method: the 

area under the receiver operating characteristic curve (AUC), Kolmogorov-Smirnov (KS) statistic, H 

measure, precision, and recall (Hand, 2009). To estimate out-of-sample performance of each method, we 

performed ten independent 10-fold cross-validations, resulting in 100 performance estimates, to get a robust 

result. The performance results (mean and standard deviation) reported later are all based on the 100 

estimates. For a fair comparison between methods, the partitioning of folds was kept identical across all 

methods during each 10-fold cross-validation. 

We also performed a series of additional experiments to analyze the performance of ARDL on all fronts. 

Specifically, an ablation study was performed to examine whether and how each design artifact influences 

the predictive performance; an interpretation analysis was performed to demonstrate how ARDL adaptively 

identifies important information using attention weights; a sensitivity analysis was performed to reveal how 

the conditional entropy-based regularization impacts ARDL’s performance; two robustness tests were 

conducted to examine whether the utility of ARDL is affected by dataset selection and data diversity. 

5. Experimental Results and Analysis 

5.1 Predictive Performance 

We first examined the predictive performance of each method using different degrees of multimodal 

data (i.e., single modality, dual modalities, and triple modalities). For current reports, we obtained a 768-

dimensional document vector of each report using BERT. We calculated the mean of all document vectors 

of each company as the input of textual modality for machine learning methods and deep learning methods 

without temporal modeling (AFF, CML, LMF, and GMU). We used a sequence of document vectors of 

each company as the input of textual modality for deep learning methods with temporal modeling (TMN, 
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FGAN, and ARDL). For interfirm networks, we used the graph neural network to generate a 128-

dimensional feature vector (i.e., node embedding) for each company as the input of network modality for 

both machine learning and deep learning methods. Table 3 summarizes the results of each method (mean 

and standard deviation) using single modality, dual modalities, and triple modalities, respectively. 

Additionally, considering such a high dimension of textual input may be intractable for a machine learning 

method, we reduced the dimension of the feature vector to 50 using principal component analysis (PCA) 

(Jiang et al., 2022a), and used the reduced feature vector as the input in terms of textual modality for the 

machine learning methods. The detailed results of each method are available in Appendix D. Meanwhile, 

considering the sentiment and readability information embedded in current reports may provide additional 

signals for the textual input, we further extracted two types of sentiment and readability features, 

respectively. These features were then combined with the semantic features extracted by BERT to construct 

the textual input for both ARDL and benchmarks. The detailed descriptions of the extraction process and 

the results of each method are available in Appendix D. 

The results show that ARDL significantly outperformed all benchmarked methods, under unimodal, 

bimodal, and trimodal inputs. This demonstrates the advantages of our method, which is designed by 

considering the intra-modality importance and the inter-modality heterogeneity, as well as the 

complementarity and redundancy of modality information for FDP. To further clarify the experimental 

results, we make vertical and horizontal comparative analyses. 

From the vertical perspective (comparison among modalities), we find that incorporating the textual 

or network features significantly improved performance for every method compared to relying solely on 

financial features. Furthermore, the use of a combination of financial and network features always 

outperformed the combination of financial and textual features, indicating that network features based on 

relational risks and demographic data could be more valuable than textual features based on disclosure 

reports data in FDP. By incorporating trimodal features, the models always achieved the best performance, 

showing the effectiveness of using trimodal data. An interesting finding lies in that for some methods (e.g., 

LR and SVM), trimodal input not always yielded better performance than bimodal inputs. The potential  
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Table 3. Predictive Performance of ARDL versus Benchmarks (%). 

Method Fin Fin+Text Fin+Net Fin+Text+Net 
Metrics AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall 

LR 
79.10 

(1.91) 

58.36 

(1.74) 

45.03 

(1.86) 

77.89 

(1.74) 

81.62 

(1.84) 

83.97 

(2.73) 

62.13 

(2.76) 

47.02 

(2.93) 

79.54 

(2.81) 

81.66 

(2.84) 

85.50 

(2.72) 

64.43 

(2.84) 

50.64 

(2.59) 

80.35 

(2.47) 

83.72 

(2.64) 

81.96 

(2.34) 

61.63 

(2.17) 

46.63 

(2.35) 

78.31 

(2.29) 

81.07 

(2.36) 

SVM 
82.28 

(1.85) 

58.68 

(1.83) 

45.33 

(1.57) 

80.19 

(1.74) 

81.37 

(1.76) 

84.63 

(2.26) 

63.49 

(2.64) 

49.50 

(2.51) 

81.27 

(2.27) 

83.48 

(2.45) 

85.84 

(1.93) 

65.65 

(2.43) 

51.59 

(2.71) 

82.38 

(1.83) 

85.40 

(1.98) 

83.63 

(2.36) 

63.80 

(2.61) 

52.62 

(2.47) 

80.14 

(1.79) 

83.73 

(1.78) 

XGB 
84.68 

(1.50) 

61.09 

(1.53) 

46.88 

(1.76) 

82.82 

(2.12) 

84.04 

(2.12) 

86.21 

(2.31) 

64.94 

(2.18) 

50.05 

(2.47) 

82.00 

(2.35) 

83.85 

(2.87) 

87.14 

(1.98) 

66.65 

(2.15) 

53.00 

(2.21) 

82.87 

(2.20) 

85.79 

(1.96) 

87.67 

(1.58) 

68.55 

(2.16) 

54.63 

(1.84) 

81.68 

(2.10) 

84.43 

(2.18) 

LightGBM 
83.96 

(1.43) 

59.72 

(1.78) 

46.56 

(1.69) 

81.90 

(1.96) 

83.92 

(1.97) 

85.63 

(2.03) 

64.22 

(2.73) 

51.41 

(2.42) 

82.93 

(2.18) 

85.03 

(2.74) 

86.99 

(2.12) 

64.99 

(1.98) 

52.76 

(2.65) 

83.70 

(2.04) 

86.69 

(2.12) 

87.49 

(2.04) 

67.68 

(2.03) 

54.38 

(1.81) 

82.69 

(2.08) 

85.35 

(1.93) 

TMN 
85.34 

(1.12) 

64.17 

(1.21) 

52.07 

(1.46) 

82.15 

(2.01) 

85.30 

(2.02) 

87.58 

(1.60) 

65.57 

(1.46) 

51.98 

(1.84) 

83.51 

(2.34) 

82.08 

(2.83) 

88.72 

(1.20) 

67.60 

(1.70) 

53.62 

(1.63) 

84.44 

(1.96) 

86.03 

(2.17) 

89.77 

(1.36) 

69.45 

(1.60) 

56.72 

(1.41) 

83.19 

(1.88) 

85.65 

(1.91) 

AFF 
85.01 

(1.04) 

62.12 

(1.48) 

49.31 

(1.10) 

82.32 

(1.67) 

85.05 

(1.59) 

87.05 

(1.77) 

65.40 

(1.51) 

54.05 

(1.75) 

84.31 

(2.08) 

86.24 

(1.93) 

87.32 

(1.38) 

67.43 

(1.41) 

53.49 

(1.27) 

85.19 

(1.70) 

86.92 

(1.79) 

88.76 

(1.76) 

69.75 

(1.92) 

55.79 

(1.70) 

84.35 

(1.58) 

86.39 

(1.93) 

FGAN 
85.18 

(1.18) 

63.30 

(0.95) 

50.05 

(1.17) 

83.20 

(1.59) 

85.50 

(1.86) 

88.29 

(1.39) 

66.81 

(1.73) 

54.40 

(2.18) 

85.16 

(2.06) 

86.80 

(2.27) 

88.81 

(1.74) 

68.81 

(1.83) 

56.40 

(1.61) 

85.78 

(1.69) 

87.14 

(1.62) 

90.94 

(1.63) 

71.13 

(1.89) 

59.90 

(1.83) 

84.86 

(1.74) 

85.99 

(1.84) 

CML - - - - - 
86.94 

(1.62) 

65.21 

(1.78) 

50.90 

(2.03) 

84.08 

(2.37) 

85.49 

(2.01) 

87.67 

(1.66) 

66.76 

(1.85) 

55.55 

(1.52) 

84.53 

(2.31) 

87.43 

(2.22) 

89.27 

(1.33) 

69.83 

(2.20) 

56.75 

(1.47) 

83.71 

(2.05) 

85.88 

(2.20) 

LMF - - - - - 
86.80 

(1.78) 

66.60 

(2.09) 

52.93 

(1.68) 

83.56 

(2.11) 

85.45 

(2.21) 

86.94 

(1.57) 

65.09 

(1.91) 

52.66 

(1.65) 

84.20 

(1.99) 

86.85 

(1.87) 

88.78 

(1.91) 

68.49 

(2.11) 

55.83 

(1.55) 

81.20 

(1.95) 

83.59 

(1.96) 

GMU - - - - - 
87.63 

(1.51) 

67.07 

(1.76) 

53.54 

(1.50) 

84.72 

(2.06) 

86.57 

(1.88) 

88.67 

(1.08) 

67.64 

(1.70) 

55.99 

(1.42) 

85.41 

(1.69) 

87.06 

(1.91) 

90.20 

(1.66) 

70.02 

(2.21) 

58.32 

(1.68) 

83.54 

(1.69) 

86.76 

(1.78) 

ARDL 
85.84 

(0.80) 

65.24 

(0.85) 

52.35 

(0.60) 

84.50 

(1.16) 

85.88 

(1.01) 

89.25 

(1.47) 

68.27 

(1.66) 

56.10 

(1.27) 

85.54 

(1.63) 

87.16 

(1.84) 

90.25 

(1.12) 

69.30 

(1.52) 

57.45 

(1.24) 

86.35 

(1.29) 

88.51 

(1.68) 

91.76 

(1.48) 

72.58 

(1.58) 

62.19 

(1.62) 

85.37 

(2.11) 

87.39 

(1.96) 

Notes: “Fin” refers to financial indicators; “Text” refers to current reports; “Net” refers to interfirm networks. The best performance is in boldface. 

 

Table 4. Representation Performance of ARDL versus Benchmarks (%). 

Method LR SVM XGB LightGBM 

Metrics AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall 

TMN 
90.57 

(1.45) 

68.90 

(1.49) 

59.00 

(1.37) 

83.44 

(1.22) 

84.63 

(1.50) 

90.58 

(1.52) 

68.73 

(1.56) 

57.49 

(1.43) 

83.25 

(1.41) 

83.83 

(1.45) 

91.82 

(1.45) 

70.61 

(1.40) 

58.33 

(1.15) 

83.78 

(1.23) 

84.76 

(1.38) 

90.82 

(1.32) 

70.86 

(1.36) 

59.20 

(1.10) 

84.07 

(1.34) 

85.36 

(1.19) 

AFF 
89.52 

(1.31) 

68.43 

(1.65) 

58.27 

(1.60) 

83.27 

(1.41) 

83.93 

(1.48) 

89.63 

(1.42) 

68.34 

(1.77) 

56.35 

(1.58) 

82.59 

(1.70) 

83.58 

(1.69) 

91.21 

(1.36) 

71.07 

(1.59) 

59.99 

(1.44) 

84.38 

(1.46) 

83.96 

(1.36) 

90.44 

(1.34) 

70.87 

(1.61) 

59.45 

(1.46) 

84.78 

(1.26) 

84.60 

(1.30) 

FGAN 
90.90 

(1.34) 

70.61 

(1.68) 

60.63 

(1.32) 

84.65 

(1.13) 

85.39 

(1.07) 

90.68 

(1.41) 

70.66 

(1.93) 

60.51 

(1.27) 

84.10 

(1.30) 

84.81 

(1.21) 

92.00 

(1.25) 

71.91 

(1.92) 

62.74 

(1.05) 

85.28 

(1.00) 

85.10 

(1.22) 

91.67 

(1.19) 

72.37 

(1.87) 

62.88 

(1.19) 

86.27 

(1.11) 

86.74 

(1.09) 

CML 
89.31 

(1.61) 

67.64 

(2.07) 

56.44 

(1.63) 

82.55 

(1.51) 

83.68 

(1.37) 

88.58 

(1.74) 

68.12 

(2.02) 

55.59 

(1.85) 

82.36 

(1.70) 

82.97 

(1.75) 

89.95 

(1.82) 

69.32 

(2.08) 

56.20 

(1.77) 

84.21 

(1.67) 

83.68 

(1.40) 

90.08 

(1.53) 

69.99 

(1.96) 

56.91 

(1.73) 

84.27 

(1.52) 

84.59 

(1.45) 

LMF 
88.88 

(1.50) 

66.15 

(2.08) 

55.51 

(1.53) 

82.58 

(1.61) 

82.15 

(1.69) 

88.49 

(1.71) 

65.54 

(1.95) 

55.57 

(1.81) 

81.98 

(1.79) 

82.92 

(1.65) 

89.62 

(1.64) 

66.98 

(1.78) 

56.38 

(1.72) 

82.90 

(1.68) 

82.55 

(1.76) 

89.65 

(1.83) 

67.88 

(1.92) 

56.56 

(1.47) 

83.66 

(1.74) 

83.89 

(1.52) 

GMU 
90.40 

(1.53) 

70.57 

(2.88) 

60.07 

(1.34) 

84.14 

(1.19) 

84.88 

(1.35) 

89.27 

(1.74) 

70.90 

(2.12) 

60.92 

(1.43) 

83.44 

(1.44) 

84.14 

(1.33) 

90.89 

(1.55) 

71.67 

(2.05) 

62.75 

(1.22) 

84.30 

(1.00) 

85.12 

(1.15) 

90.40 

(1.39) 

71.93 

(2.18) 

61.78 

(1.23) 

84.44 

(1.04) 

86.44 

(1.24) 

ARDL 
91.43 

(1.27) 

71.39 

(1.69) 

61.63 

(0.95) 

85.29 

(1.03) 

86.39 

(0.95) 

91.84 

(1.42) 

71.72 

(1.89) 

62.71 

(1.18) 

84.88 

(1.18) 

85.15 

(1.18) 

92.87 

(1.12) 

74.03 

(1.85) 

64.69 

(1.28) 

86.30 

(1.03) 

88.17 

(1.13) 

92.32 

(1.23) 

72.44 

(1.92) 

63.91 

(1.25) 

86.70 

(0.99) 

88.26 

(1.00) 

Note: The best performance is in boldface.
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reason may be that neglecting intramodal heterogeneity and simply concatenating multimodal inputs led to 

overfitting. Such finding further highlights the importance of extracting key information within and among 

modalities in FDP. 

From the horizontal perspective (comparison among methods), we find that, compared to machine 

learning methods, deep learning methods always made noticeable improvements on every data set. Among 

the deep learning benchmarks, FGAN, which incorporates intramodal and intermodal attentions, 

outperformed others for every data input, manifesting the advantage of attention mechanisms for dealing 

with heterogeneous utilities implied in multimodal data. On the four data sets, ARDL yielded improved 

performance over all attention-based benchmarks (i.e., TMN, AFF, and FGAN). This result demonstrates 

the facilitating role of the modality-specific attentions and the conditional entropy-based regularization on 

prediction performance. ARDL also outperformed gate-based GMU, concatenation-based CML, and 

factorization-based LMF. Finally, ARDL consistently surpassed all the machine learning benchmarks, 

including linear and ensemble methods. 

5.2 Representation Performance 

Given the capability of representation learning of multimodal data, we further examined the 

representation performance of ARDL versus benchmarked deep learning methods. Specifically, we 

extracted the representation of the last layer of each method and built four downstream classifiers (LR, 

SVM, XGB, and LightGBM) for FDP. Hence, the better the representation performance, the better the 

predictive performance of the downstream classifiers. Table 4 summarizes the results of representation 

performance of each method using trimodal data. 

From the vertical perspective (comparison among classifiers), ensemble methods (XGB and 

LightGBM) achieved better performance than linear methods (LR and SVM) across all representations and 

metrics. Notably, XGB led to the best performance, demonstrating its superior classification capability for 

multimodal-based FDP. From the horizontal perspective (comparison among representations), the results 

show that the predictive performance of the downstream classifiers of ARDL was significantly superior to 

those of all benchmarked methods, indicating a better representation performance. As with the results of 
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the predictive performance, representations generated by FGAN achieved the best performance among the 

deep learning benchmark methods. Another interesting finding lies in that with the representations learned 

by the deep learning methods, the downstream classifiers (XGB and LightGBM) may yield even better 

predictive performance. For example, the mean AUC of XGB using the representation of ARDL was 92.87, 

higher than the original ARDL (91.76). The reason may be that ensemble learning works better for the final 

tabular classification task, as compared to MLP (Gorishniy et al., 2022). Such finding also indicates a 

promising direction, i.e., designing two-stage methods for FDP, consisting of a deep learning module for 

generating joint modality representation and an ensemble learning module for the downstream prediction 

task. 

5.3 Ablation Study 

To examine whether and how each design artifact affects the performance of ARDL, we performed an 

ablation study. Specifically, we built six ablative variants (M1 to M6) of ARDL, each of which drops a design 

artifact in ARDL. Methods M1, M2, and M3 drop the ratio-aware, report-aware, and neighbor-aware 

attention modules, respectively. Method M4 drops all the three modality-specific attention modules. Method 

M5 drops the conditional entropy-based regularized fusion module. Method M6 drops the focal loss module 

and uses the cross-entropy loss instead. Figure 3 illustrates the results of the six ablative variants in terms 

of AUC (mean values across ten times 10-fold cross-validations). 

 
Figure 3. Results of Ablation Study. 
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The results show that M1, M2, and M3 exhibit varying degrees of performance degradation in terms of 

AUC as compared to ARDL and there is a significant gap between M4 and ARDL, indicating that each 

modality-specific attention module contributes to performance improvement of FDP. Besides, dropping 

either conditional entropy-based regularization (M5) or focal loss (M6) both show significant performance 

degradation. In summary, the results of ablation study provide clear evidence that all the design artifacts 

(modality-specific attentions, conditional entropy-based regularization, and focal loss) contribute to 

performance improvement and they collectively ensure the effectiveness of ARDL. 

5.4 Interpretation Analysis on Attention Weights 

To examine whether and how each modality-specific attention identifies key information, we also 

performed an interpretation analysis on attention weights. The attention weights show the distinct 

importance of different financial ratio groups, current reports, and neighbor companies and help to better 

understand the factors contributing to FDP. Figures 4 to 6 illustrate the average attention weights of financial 

ratio groups, current reports, and neighbor companies, respectively, across ten independent 10-fold cross-

validations (each block presents the average attention weight across one run of 10-fold cross-validations). 

For financial ratios, we divided them into five groups based on the financial aspects they reflect (i.e., 

profitability, solvency, development capacity, operational capabilities, and finance structure). For example, 

profitability reflects a company’s ability to generate profits, including metrics like return on assets and 

return on equity. Solvency reflects a company’s ability to meet its financial obligations, using measures 

such as the current ratio and quick ratio. Both of these two groups play important roles in distinguishing 

between normally operated and financially distressed companies, as compared to other financial ratio 

groups such as development capacity and operational capabilities. Such finding is consistent with prior 

studies (Fu et al., 2020), in which financial distress of a company has been found to be generally associated 

with low profitability and solvency. In addition, the financial structure ratio group, which reflects a 

company’s capital and debt arrangement, may be less indicative of financial distress as some of the 

information it provides may already be captured by other indicators. This is demonstrated by its attention 

weights consistently being at a low level. 
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Figure 4. Attention Weights of Financial Ratio Groups. 

For current reports, we divided them into ten categories based on their specific disclosure scenarios. It 

should be noted that the division of current reports is only intended to facilitate the interpretive analysis. 

Among the categories, corporate operations refer to the current reports related to business operations, such 

as outward investments, provision of guarantees, and interfirm transactions. Litigation and lawsuit refer to 

the current reports related to material risk events that companies are involved, including legal proceedings, 

arbitrations, and violations. We then calculated the average attention weights for each category of report 

(illustrated in Figure 5). The results show that both corporate operations and litigation and lawsuit related 

reports show outstanding predictive ability. The reason may lie in that corporate operations-related reports 

provide valuable information reflecting financial position and overall stability of the company. Litigation 

and lawsuit-related reports reflect the risk events that could adversely affect the financial position of the 

company (Yin et al., 2020). Besides, reports on other events, such as stock issuance and notice of general 

meetings, were found to be less indicative of financial distress, as they offer limited insights into the 

financial position of the company. 
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Figure 5. Attention Weights of Current Report Groups. 

For interfirm networks, we divided neighbor companies into four groups based on the types of risk 

events (i.e., administrative penalties, equity pledges, and loan disputes) they were involved in. It should be 

noted that the division of neighbors is only intended to facilitate the interpretive analysis. Among the groups, 

neighbor companies-3 refers to the neighbor companies that were involved in all three types of risk events 

within a year. Neighbor companies-2 refers to the neighbor companies that were involved in any two types 

of risk events within a year, such as administrative penalties and equity pledges, or equity pledges and loan 

disputes. We then calculated the average attention weights for each group (illustrated in Figure 6). The 

results show a positive correlation between the risk levels of neighbor companies and the assigned attention 

weights, indicating that companies with higher-risk neighbor companies are more prone to financial distress 

due to the contagion effect of risk events. The neighbor companies-3 exhibit a remarkable capability in 

predicting the financial distress of target companies, as evidenced by their consistently superior attention 

weights across all runs. They are followed by neighbor companies-2 and neighbor companies-1 in terms of 

predictive power. In contrast, the neighbor companies-0, which have no risk events, contribute less to FDP 

compared to other companies. In this regard, the elevated weights assigned to riskier neighbor companies 
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provide valuable guidance for stakeholders to assess the level of attention they should allocate to specific 

counterparts, and thus help them identify more valuable financial distress clues. 

 
Figure 6. Attention Weights of Neighbor Company Groups. 

5.5 Sensitivity Analysis 

To investigate the effect of the regularization parameter 𝜆  on the performance of ARDL, we also 

performed a sensitivity analysis. A high value of 𝜆 may lead to inadequate representation of multimodal 

information, whereas a low value of 𝜆 may lead to an inadequate focus on redundant information. We set 

the value of 𝜆 with different values (1, 10−1 , 10−2 , 10−3 , 10−4) and examined the performance of ARDL 

in terms of AUC (illustrated in Figure 7). The results show that the performance of ARDL gradually 

improved with the value of 𝜆 decreased from 1 to 10−2 and then the performance reduced with the value 

of 𝜆  lower than 10−2 . The empirical results suggest that 10−2  may be a reasonable value to yield an 

effective tradeoff between the two losses. We caution that the optimal regularization parameter may vary 

across contexts and finding an appropriate regularization parameter may be necessary when applying ARDL 

for other contexts. If the modeling scenario undergoes significant change, the parameter 𝜆  remains 

amenable to adjustment through parameter tuning.  
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Figure 7. Results of Sensitivity Analysis. 

5.6 Robustness Tests 

We conducted two robustness tests to further examine whether the utility of our proposed method is 

affected by (1) dataset selection; (2) data diversity. Overall, the results demonstrate that the effectiveness 

of ARDL is robust across different contexts and higher diversity of data sources. 

The first test examines whether the effectiveness of ARDL is robust to the potential dataset selection 

bias. Specifically, we first collected an additional multimodal dataset of listed companies in the Shenzhen 

Stock Exchange and Shanghai Stock Exchange of China from 2019 to 2022 for FDP. A detailed description 

of the multimodal dataset is available in Appendix E. We then examined the robustness of ARDL on the 

new dataset by comparing its predictive and representation performance with benchmarked methods. The 

detailed results of each method are available in Appendix F. Overall, the results show similar patterns in the 

two multimodal cases (i.e., NEEQ companies and listed companies). ARDL consistently outperformed all 

benchmarked methods in terms of predictive and representation performance in both multimodal cases. 

This demonstrates that the effectiveness and generalization of our method under different contexts. 

Additionally, incorporating multimodal features improved performance for every method, showing that the 

performance improvement due to the use of multimodal features was also robust. 

The second test examines whether the effectiveness of ARDL is robust with higher diversity of data 

sources. First of all, considering the three attention modules of ARDL are designed for the specific modality 
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representations in multimodal contexts, they may not be suitable for multi-view datasets where the data 

structures do not necessarily conform to those modality assumptions. We thereby built a general variant of 

ARDL (ARDLv) by dropping the three modality-specific attentions for FDP. To have a fair comparison, we 

also removed the data representation modules of the benchmarked methods (TMN, FGAN) and built their 

variants (TMNv, FGANv) for FDP. Besides, we further collected a more diverse multi-view dataset of listed 

companies from five distinct sources in the Shenzhen Stock Exchange and Shanghai Stock Exchange of 

China from 2019 to 2022 for FDP. A detailed description of the multi-view dataset is available in Appendix 

G. Then, we examined the robustness of the general variant of ARDL (i.e., combining the conditional 

entropy-based regularized fusion module and the focal loss module) on the multi-view dataset by comparing 

its predictive and representation performance with benchmarked methods. The detailed results of each 

method are available in Appendix H. Overall, ARDL outperformed all benchmarked methods in terms of 

predictive and representation performance, validating the usefulness and stability of our proposed method 

on more diverse data sources. 

5.7 Findings and Implications 

Our work contributes significant findings from the aspects of information and methodology. In regard 

to information for financial distress prediction, our study demonstrates that the three identified modalities 

indeed have discriminative, albeit heterogeneous, ability in predicting financial distress. These modalities 

ranked from high to low in terms of predictive performance are financial indicators, interfirm networks, 

and current reports. Financial indicators, particularly profitability and solvency-related ratios, are highly 

indicative of financial distress and provide valuable insights into potential issues related to debt repayment. 

Echoing the evidence that the failure or distress of one company may trigger a domino effect due to 

interrelation and interdependencies within the financial system, our study clearly demonstrates that 

companies with riskier neighbors are more susceptible to financial distress due to the contagion effect of 

risk events. Additionally, among various types of current reports, corporate operations and litigation and 

lawsuit-related reports are found to be the most informative in reducing information asymmetry between 

companies and stakeholders, thereby mitigating financial distress. 
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From the aspect of methodology, on the one hand, our study highlights the superior predictive 

performance of leveraging multimodal data for FDP; on the other hand, leveraging all three modalities does 

not always result in superior performance compared to using only two modalities, especially for linear 

methods (e.g., LR and SVM). One potential explanation lies in that neglecting the heterogeneity within 

each modality and simply concatenating multimodal inputs may impede the extraction of valuable 

knowledge from multimodal data. This finding further emphasizes the importance of identifying and 

extracting key information within and among modalities in FDP. Additionally, we found that the two-stage 

method may even yield superior predictive performance, i.e., a deep learning module for generating a joint 

modality representation and then an ensemble learning module for predicting financial distress. 

Our work also provides practical implications for stakeholders. First, regarding the benefits of utilizing 

multimodal data for FDP (e.g., financial indicators, current reports, and interfirm networks), stakeholders 

(e.g., investors) may consider extracting valuable information from multiple sources to gain a 

comprehensive understanding of a company’s risk profile. Second, the utilization of flexible modeling 

methods (e.g., ARDL) that treat each modality as an independent source of knowledge and promote the 

integration of complementary information from multiple modalities during fusion, is essential when 

predicting financial distress using multimodal data. Stakeholders (e.g., financial institutions) can leverage 

the proposed method to enhance the performance of FDP, thus leading to improved investment decisions 

and loan assessments. Moreover, companies can enhance investor and creditor confidence by disclosing 

additional information, such as ESG reports, to mitigate information asymmetry. 

6. Conclusion 

In light of the increasing value of multimodal data and the challenges of leveraging multimodal data 

for FDP, we propose an attentive and regularized deep learning method. The proposed method synthesizes 

three designed modality-specific attention modules to explicitly and adaptively extract key information 

within each modality and a novel conditional entropy-based regularization to alleviate redundant 

information during modality fusion. Our empirical evaluation results demonstrate the advantage of ARDL. 

It significantly outperformed benchmarked methods in terms of both predictive performance and 
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representation performance. Ablation study confirms the performance improvement effects of its core 

components. Interpretation analysis on attention weights illustrates how each feature within each modality 

differentially worked for FDP. Sensitivity analysis reveals how the regularization parameter effect the 

performance of ARDL. Robustness tests clearly show that the utility of ARDL is not affected by dataset 

selection and data diversity. We also provide the key findings and implications. 

Our study has several limitations that could be addressed in future research. First, we used three 

representative modalities to predict financial distress and there exist numerous other informative modalities, 

such as earnings conference calls (Li et al., 2020) and initial public offering roadshow videos (Freiberg and 

Matz, 2023). Future research may explore the utility of new data modalities and expand ARDL to leverage 

additional modalities, for better predictive performance. Second, we treated financial distress prediction as 

a binary classification problem, whereas financial distress could be more nuanced, ranging from slight 

financial distress to severe financial distress (e.g., bankruptcy). Future research may consider extending 

ARDL to accommodate various degrees of financial distress. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (grants 71731005 and 

72101073) and the Anhui Provincial Natural Science Foundation (grant 2108085MG234). 



 

38 

 

Reference 

Beaver, W. H., Cascino, S., Correia, M., & McNichols, M. F. (2019). Group affiliation and default prediction. 

Management Science, 65(8), 3559–3584. 

Bi, W., Xu, B., Sun, X., Wang, Z., Shen, H., & Cheng, X. (2022). Company-as-tribe: Company financial 

risk assessment on tribe-style graph with hierarchical graph neural networks. In Proceedings of the 

28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2712–2720). 

Borchert, P., Coussement, K., De Caigny, A., & De Weerdt, J. (2023). Extending business failure prediction 

models with textual website content using deep learning. European Journal of Operational Research, 

306(1), 348–357. 

Chen, G., Xiao, S., Zhang, C., & Zhao, H. (2023). A theory-driven deep learning method for voice chat–

based customer response prediction. Information Systems Research, isre.2022.1196. 

Chen, N., Ribeiro, B., & Chen, A. (2016). Financial credit risk assessment: A recent review. Artificial 

Intelligence Review, 45(1), 1–23. 

Cui, G., & Li, Y. (2022). Nonredundancy regularization based nonnegative matrix factorization with 

manifold learning for multiview data representation. Information Fusion, 82, 86–98. 

Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A 

systematic literature survey. Applied Soft Computing, 91, 106263. 

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional 

transformers for language understanding. arXiv preprint arXiv:1810.04805. 

Dikmen, M., & Burns, C. (2022). The effects of domain knowledge on trust in explainable AI and task 

performance: A case of peer-to-peer lending. International Journal of Human-Computer Studies, 162, 

102792. 

Du, Y., Liu, Y., Peng, Z., & Jin, X. (2022). Gated attention fusion network for multimodal sentiment 

classification. Knowledge-Based Systems, 240, 108107. 

Fan, S., & Ilk, N. (2020). A text analytics framework for automated communication pattern analysis. 

Information & Management, 57(4), 103219. 

Freiberg, B., & Matz, S. C. (2023). Founder personality and entrepreneurial outcomes: A large-scale field 

study of technology startups. Proceedings of the National Academy of Sciences, 120(19), e2215829120. 

Fu, X., Ouyang, T., Chen, J., & Luo, X. (2020). Listening to the investors: A novel framework for online 

lending default prediction using deep learning neural networks. Information Processing & 

Management, 57(4), 102236. 

Ge, P., Ren, C.-X., Xu, X.-L., & Yan, H. (2023). Unsupervised domain adaptation via deep conditional 

adaptation network. Pattern Recognition, 134, 109088. 

Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese 

companies using data mining. European Journal of Operational Research, 241(1), 236–247. 

González-López, J., Ventura, S., & Cano, A. (2020). Distributed selection of continuous features in 

multilabel classification using mutual information. IEEE Transactions on Neural Networks and 

Learning Systems, 31(7), 2280–2293. 

Gorishniy, Y., Rubachev, I., & Babenko, A. (2022). On embeddings for numerical features in tabular deep 

learning. Advances in Neural Information Processing Systems, 35, 24991–25004. 

Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to the area under the ROC 

curve. Machine Learning, 77(1), 103–123. 

Huang, Y., Du, C., Xue, Z., Chen, X., Zhao, H., & Huang, L. (2021). What makes multi-modal learning 

better than single (provably). Advances in Neural Information Processing Systems, 34, 10944–10956. 

Iyer, R., Khwaja, A. I., Luttmer, E. F. P., & Shue, K. (2016). Screening peers softly: Inferring the quality of 

small borrowers. Management Science, 62(6), 1554–1577. 

Jiang, C., Lyu, X., Yuan, Y., Wang, Z., & Ding, Y. (2022a). Mining semantic features in current reports for 

financial distress prediction: Empirical evidence from unlisted public firms in China. International 

Journal of Forecasting, 38(3), 1086–1099. 



 

39 

 

Jiang, C., Wang, J., Wang, Z., Liu, X. (2022b). Capturing heterogeneous interactions for financial risk 

prediction of SMEs. PACIS 2022 Proceedings, 56, 1361. 

Korangi, K., Mues, C., & Bravo, C. (2023). A transformer-based model for default prediction in mid-cap 

corporate markets. European Journal of Operational Research, 308(1), 306–320. 

Kou, G., Xu, Y., Peng, Y., Shen, F., Chen, Y., Chang, K., & Kou, S. (2021). Bankruptcy prediction for SMEs 

using transactional data and two-stage multiobjective feature selection. Decision Support Systems, 140, 

113429. 

Kraus, M., & Feuerriegel, S. (2017). Decision support from financial disclosures with deep neural networks 

and transfer learning. Decision Support Systems, 104, 38–48. 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 

Lee, J. W., Lee, W. K., & Sohn, S. Y. (2021). Graph convolutional network-based credit default prediction 

utilizing three types of virtual distances among borrowers. Expert Systems with Applications, 168, 

114411. 

Li, J., Yang, L., Smyth, B., & Dong, R. (2020). MAEC: A multimodal aligned earnings conference call 

dataset for financial risk prediction. In Proceedings of the 29th ACM International Conference on 

Information & Knowledge Management (pp. 3063–3070). 

Li, S., Shi, W., Wang, J., & Zhou, H. (2021). A deep learning-based approach to constructing a domain 

sentiment lexicon: A case study in financial distress prediction. Information Processing & 

Management, 58(5), 102673. 

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2020). Focal loss for dense object detection. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–327. 

Liu, J., Wang, S., Ma, W.-C., Shah, M., Hu, R., Dhawan, P., & Urtasun, R. (2020). Conditional entropy 

coding for efficient video compression. In European Conference on Computer Vision (pp. 453-468). 

Liu, X., Li, Y., Jiang, C., Wang, Z., Zhao, F., & Wang, J. (2022). Attentive feature fusion for credit default 

prediction. In 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in 

Design (pp. 816–821). 

Liu, Z., Shen, Y., Lakshminarasimhan, V. B., Liang, P. P., Zadeh, A., & Morency, L.-P. (2018). Efficient 

low-rank multimodal fusion with modality-specific factors. arXiv preprint arXiv:1806.00064. 

Long, J., Jiang, C., Dimitrov, S., & Wang, Z. (2022). Clues from networks: Quantifying relational risk for 

credit risk evaluation of SMEs. Financial Innovation, 8(1), 1–41. 

Lu, C., Zhou, G., & Li, M. (2023). Research on information fusion method for heat model and weather 

model based on HOGA-SVM. Multimedia Tools and Applications, 82(6), 9381–9398. 

Matin, R., Hansen, C., Hansen, C., & Mølgaard, P. (2019). Predicting distresses using deep learning of text 

segments in annual reports. Expert Systems with Applications, 132, 199–208. 

Medina-Olivares, V., Calabrese, R., Dong, Y., & Shi, B. (2022). Spatial dependence in microfinance credit 

default. International Journal of Forecasting, 38(3), 1071–1085. 

Nazareth, N., & Ramana Reddy, Y. V. (2023). Financial applications of machine learning: A literature review. 

Expert Systems with Applications, 219, 119640. 

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). Multimodal deep learning. In 

Proceedings of the 28th International Conference on International Conference on Machine Learning 

(pp. 689–696). 

Pichler, G., Colombo, P. J. A., Boudiaf, M., Koliander, G., & Piantanida, P. (2022). A differential entropy 

estimator for training neural networks. In Proceedings of the 39th International Conference on 

Machine Learning (pp. 17691–17715). 

Qian, H., Wang, B., Yuan, M., Gao, S., & Song, Y. (2022). Financial distress prediction using a corrected 

feature selection measure and gradient boosted decision tree. Expert Systems with Applications, 190, 

116202. 

Schmid, L., Gerharz, A., Groll, A., & Pauly, M. (2023). Tree-based ensembles for multi-output regression: 

Comparing multivariate approaches with separate univariate ones. Computational Statistics & Data 

Analysis, 179, 107628. 



 

40 

 

Shalev, Y., Painsky, A., & Ben-Gal, I. (2022). Neural joint entropy estimation. IEEE Transactions on Neural 

Networks and Learning Systems, 1–13. 

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 

379–423. 

Sun, J., Fujita, H., Zheng, Y., & Ai, W. (2021). Multi-class financial distress prediction based on support 

vector machines integrated with the decomposition and fusion methods. Information Sciences, 559, 

153–170. 

Sun, J., Li, H., Fujita, H., Fu, B., & Ai, W. (2020). Class-imbalanced dynamic financial distress prediction 

based on Adaboost-SVM ensemble combined with SMOTE and time weighting. Information Fusion, 

54, 128–144. 

Tobback, E., Bellotti, T., Moeyersoms, J., Stankova, M., & Martens, D. (2017). Bankruptcy prediction for 

SMEs using relational data. Decision Support Systems, 102, 69–81. 

Topuz, K., Jones, B. D., Sahbaz, S., & Moqbel, M. (2021). Methodology to combine theoretical knowledge 

with a data-driven probabilistic graphical model. Journal of Business Analytics, 4(2), 125–139. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. 

(2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998-6008. 

Wang, G., Chen, G., Zhao, H., Zhang, F., Yang, S., & Lu, T. (2021). Leveraging multisource heterogeneous 

data for financial risk prediction: A novel hybrid-strategy-based self-adaptive method. MIS Quarterly, 

45(4), 1949–1998. 

Wang, G., Ma, J., & Chen, G. (2023). Attentive statement fraud detection: Distinguishing multimodal 

financial data with fine-grained attention. Decision Support Systems, 167, 113913. 

Wang, G., Ma, J., Chen, G., & Yang, Y. (2020). Financial distress prediction: Regularized sparse-based 

random subspace with ER aggregation rule incorporating textual disclosures. Applied Soft Computing, 

90, 106152. 

Xia, Y., Liu, C., & Liu, N. (2017). Cost-sensitive boosted tree for loan evaluation in peer-to-peer lending. 

Electronic Commerce Research and Applications, 24, 30–49. 

Xu, J., Chen, D., Chau, M., Li, L., & Zheng, H. (2022). Peer-to-peer loan fraud detection: Constructing 

features from transaction data. MIS Quarterly, 45(3), 1777–1792. 

Yang, X., Feng, S., Wang, D., & Zhang, Y. (2021). Image-text multimodal emotion classification via multi-

view attentional network. IEEE Transactions on Multimedia, 23, 4014–4026. 

Yang, Y., Guan, Z., Li, J., Zhao, W., Cui, J., & Wang, Q. (2021). Interpretable and efficient heterogeneous 

graph convolutional network. IEEE Transactions on Knowledge and Data Engineering, 35(2), 1637–

1650. 

Yang, Y., Qin, Y., Fan, Y., & Zhang, Z. (2023). Unlocking the power of voice for financial risk prediction: 

A theory-driven deep learning design approach. MIS Quarterly, 47(1), 63–96. 

Ye, Y., & Ji, S. (2021). Sparse graph attention networks. IEEE Transactions on Knowledge and Data 

Engineering, 35(1), 905–916. 

Yin, C., Jiang, C., Jain, H. K., & Wang, Z. (2020). Evaluating the credit risk of SMEs using legal judgments. 

Decision Support Systems, 136, 113364. 

Yıldırım, M., Okay, F. Y., & Özdemir, S. (2021). Big data analytics for default prediction using graph theory. 

Expert Systems with Applications, 176, 114840. 

Zhang, Z., Wu, C., Qu, S., & Chen, X. (2022). An explainable artificial intelligence approach for financial 

distress prediction. Information Processing & Management, 59(4), 102988. 

 

 

  



 

41 

 

Appendix A. Proof for the Variational Upper-Bound of Conditional Entropy 

Given the two variables 𝑋  and 𝑌 , let 𝑃(𝑌|𝑋)  denote a conditional distribution and 𝐻(𝑌|𝑋)  be the 

conditional entropy associated with this distribution. Then, for any 𝜖 > 0, there exists a neural network 𝑇𝜃(𝑌|𝑋) 

such that: 

|CE(𝑇𝜃(𝑌|𝑋)) − 𝐻(𝑌|𝑋)| ≤
𝜖

2
,        𝑎. 𝑒. (A1) 

where the cross-entropy term CE(𝑇𝜃(𝑌|𝑋)) = −𝔼𝑃(𝑋,𝑌)log (𝑇𝜃(𝑌|𝑋)). 

With the cross-entropy and KL-divergence, the conditional entropy 𝐻(𝑌|𝑋) can be expressed as: 

𝐻(𝑌|𝑋) = 𝔼𝑃(𝑋,𝑌)log
1

𝑃(𝑌|𝑋)

= 𝔼𝑃(𝑋,𝑌)log
1

𝑇𝜃(𝑌|𝑋)

𝑇𝜃(𝑌|𝑋)

𝑃(𝑌|𝑋)

= 𝔼𝑃(𝑋,𝑌)log
1

𝑇𝜃(𝑌|𝑋)
− 𝐷KL(𝑃(𝑌|𝑋)‖𝑇𝜃(𝑌|𝑋)) (A2)

 

Since the KL-divergence is a non-negative measure, the conditional entropy in Eq. (A2) satisfies the 

inequality constrain in Eq. (A3). Therefore, we can derive the variational upper-bound, i.e., CE(𝑇𝜃(𝑌|𝑋)). 

𝐻(𝑌|𝑋) ≤ CE(𝑇𝜃(𝑌|𝑋)) (A3) 

Similarly, for the three variables 𝑋, 𝑌, and 𝑍, the variational upper-bound of the conditional entropy 

𝐻(𝑍|𝑋, 𝑌) can be expressed as CE(𝑇𝜃(𝑍|𝑋, 𝑌)). 
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Appendix B. Description of Multimodal Data of NEEQ Companies. 

Table B1. Description of Ratio Groups. 

Category  Feature Min Max Mean S.D. 

Profitability 

X1 Return on assets -2.09 1.20 0.03 0.17 

X2 Return on equity -35.60 6.06 0.03 0.69 

X3 Net profit ratio -676.74 250.37 -0.34 11.96 

X4 Net profit to current asset -5.45 2.70 0.04 0.29 

X5 Net profit to fixed asset -525.69 9,087.01 3.98 105.92 

X6 Ebit to asset -18.95 23.48 0.04 0.40 

Solvency 

X7 Current ratio 0.00 4,250.78 4.10 48.59 

X8 Quick ratio 0.00 4,912.06 3.46 48.44 

X9 Asset liability ratio 0.00 197.53 0.44 2.27 

X10 Debt equity ratio -105.16 565.26 1.29 10.65 

X11 Debt tangible equity ratio -46,931.52 77,450.45 248.42 2,828.72 

X12 Current liability coverage -977.18 47.72 -0.08 11.16 

Development  

capacity 

X13 
Operating revenue growth 

rate 
-1.00 18,524.68 3.12 221.03 

X14 Net profit growth rate -5,388.92 171.35 -1.12 72.03 

X15 Assets growth rate -1.00 27.84 0.21 0.60 

X16 
Net operation cash flow 

growth rate 
-85,640.02 84,222.50 103.52 3,796.21 

X17 
Operation cash per share 

growth rate 
-34,510.21 85,262.69 119.52 3,030.95 

X18 Equity growth rate -91.12 111.78 0.20 2.33 

Operational 

capabilities 

X19 Inventory turning rate 0.00 133,586.30 107.98 3,103.13 

X20 Receivable turnover ratio  0.00 243,711.40 185.80 5,535.36 

X21 Accrued payable rate 0.00 9,935.29 16.56 236.86 

X22 Equity rate  0.00 91.72 1.94 3.80 

X23 Net operating cycle  -307,587.90 44,062.09 114.71 7,195.30 

X24 Working capital total rate 0.00 13,901.76 19.91 375.97 

Finance 

structure 

X25 Current asset ratio 0.01 1.00 0.71 0.22 

X26 Fixed asset ratio 0.00 0.96 0.16 0.16 

X27 Equity to fixed asset ratio -6,804.78 37,171.16 59.77 639.05 

X28 Current liability ratio 0.06 1.00 0.93 0.14 

X29 Equity ratio -196.53 1.00 0.56 2.27 

X30 Working capital to equity -382.48 56.09 0.34 6.61 

 

 

B.1. Description of Current Reports 

A current report, also known as an 8-K Form, is a report of unscheduled material events or corporate 

changes at a company that could be of importance to the shareholders. Current reports provide information 

regarding the events disclosed, such as underlying causes, current status, and potential consequences. For 
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example, in the case of a company facing a judicial freeze on its equity, the company may disclose a current 

report to describe the reasons leading to the equity freeze (e.g., a property preservation measure), its current 

status (e.g., 2,977,600 shares frozen by judicial order, accounting for 14.18% of the company’s total share 

capital), and the potential effects on the company (e.g., potential changes in controlling shareholders or 

actual controllers). Additionally, the current reports may also include information about the involved 

shareholders, such as their names, whether they hold controlling interests, the total number of shares they 

own, and their ownership percentage. 

 

 
Figure B1. Distribution of Current Reports among the NEEQ Companies. 

 

B.2. Description of Interfirm Networks 

Interfirm networks refer to a type of relational network that consists of a group of mutually connected 

companies. An interfirm network consists of two constituent elements: nodes and edges; each node 

represents a company, and each edge symbolizes a relationship between two nodes, such as the sharing of 

directors, supervisors, or senior management. The relationships between companies indicate their 

interaction or association. Figure B2 illustrates an example of constructing an interfirm network. The 

circular nodes A–D represent four companies and the square nodes containing portraits represent personnel 
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in these companies, i.e., directors, supervisors, and senior management. An interfirm network is constructed, 

wherein two companies are linked if they share at least one director, supervisor, or senior management.  

 
Figure B2. Example of Constructing an Interfirm Network. 

 

Table B2. Descriptive Statistics of the Interfirm Networks. 

 Directors/Supervisors/Senior Management 

Average number of individuals per company 9.59 

Average number of neighbor companies per company 15.63 

Average number of companies per individual 3.17 
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Appendix C. Experiment Execution and Parameter Settings 

We implemented ARDL and the benchmarked methods based on programs of tensorflow-gpu-2.0.0, 

keras-2.3.1, and scikit-learn-0.23.2. All experiments were run on a server with a GPU of NVIDIA RTX 

2080Ti, RAM of 32 GB, and the Inter-Core-i7-9700 CPU processor with a 3.00 GHz clock speed. Table C1 

and Table C2 summarize the experiment settings of key parameters for both ARDL and benchmarks. 

Table C1. Parameter Settings for the ARDL. 

Module Parameter Setting Description 

MLP layer Numeric embedding size 128 
Output dimensionality of the 

hidden layer of MLP 

Pre-trained BERT Text embedding size 768 

Output dimensionality of the 

hidden layer of the pre-trained 

BERT 

GNN layer Graph embedding size 128 
Output dimensionality of the last 

hidden layer of GNN 

GRU layer 

Representation output 

dimensionality of textual 

embeddings 

128 

Output dimensionality of each 

hidden cell of GRU for textual 

embeddings 

Conditional entropy 

estimators 
Number of bins 100 

Dimensionality of each label for 

the conditional entropy 

estimation 

Adam optimizer Lr 0.001 Learning rate of the optimizer 

Overall 

Epoch 
Automatically optimized 

by early stopping 

Number of epochs to train the 

model 

Batch size 128 
Number of samples per gradient 

update 

𝜆 Multiple settings 

Conditional-entropy based 

regularization term in the loss 

function of ARDL 

 

 

Table C2. Parameter Settings for the benchmarks. 

Model Parameter Setting Description 

LR C {0.5, 1, 1.5, 2} 
The regularization coefficient of 

the model 

SVM C {1, 2, 4, 8} 
The regularization coefficient of 

the model 

XGB 
Eta {0.001, 0.01, 0.1} The learning rate of the model 

Max_Depth {4, 5, 6, 7, 8} The maximum depth of a tree 

LightGBM 
Eta {0.001, 0.01, 0.1} The learning rate of the model 

Max_Depth {4, 5, 6, 7, 8} The maximum depth of a tree 

TMN 

Number of heads {1, 2, 4, 8} 
The number of heads in the 

multi-head attention models 

Epochs 
Automatically optimized by 

early stopping  

The number of epochs to train 

the model 

AFF Epochs 
Automatically optimized by 

early stopping  

The number of epochs to train 

the model 



 

46 

 

FGAN Epochs 
Automatically optimized by 

early stopping  

The number of epochs to train 

the model 

CML Epochs 
Automatically optimized by 

early stopping  

The number of epochs to train 

the model 

LMF 

Rank {1, 2, 4, 8, 16} 

The regularization coefficient of 

the model controlling the output 

dimensionality of the low-rank 

representation 

Epochs 
Automatically optimized by 

early stopping  

The number of epochs to train 

the model 

GMU Epochs 
Automatically optimized by 

early stopping  

The number of epochs to train 

the model 
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Appendix D. Predictive Performance of ARDL versus Benchmarks on the Multimodal Dataset of NEEQ Companies 

Table D1 summarizes the results of each method (mean and standard deviation) using single modality, dual modalities, and triple modalities, respectively. As for the textual 

modality, the input to the machine learning methods undergoes PCA processing. 

Table D1. Predictive Performance of ARDL versus Benchmarks (%). 

Method Fin Fin+Text Fin+Net Fin+Text+Net 
Metrics AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall 

LR 
79.10 

(1.91) 

58.36 

(1.74) 

45.03 

(1.86) 

77.89 

(1.74) 

81.62 

(1.84) 

83.22 

(2.56) 

61.35 

(2.86) 

46.55 

(2.98) 

78.75 

(2.76) 

80.91 

(2.65) 

85.50 

(2.72) 

64.43 

(2.84) 

50.64 

(2.59) 

80.35 

(2.47) 

83.72 

(2.64) 

81.55 

(2.30) 

61.18 

(2.24) 

46.47 

(2.33) 

78.07 

(2.38) 

80.59 

(2.40) 

SVM 
82.28 

(1.85) 

58.68 

(1.83) 

45.33 

(1.57) 

80.19 

(1.74) 

81.37 

(1.76) 

84.36 

(2.36) 

63.14 

(2.54) 

48.88 

(2.53) 

80.97 

(2.04) 

83.37 

(2.28) 

85.84 

(1.93) 

65.65 

(2.43) 

51.59 

(2.71) 

82.38 

(1.83) 

85.40 

(1.98) 

83.41 

(2.11) 

63.35 

(2.48) 

52.49 

(2.38) 

80.05 

(1.54) 

83.26 

(1.79) 

XGB 
84.68 

(1.50) 

61.09 

(1.53) 

46.88 

(1.76) 

82.82 

(2.12) 

84.04 

(2.12) 

85.89 

(2.08) 

64.06 

(2.11) 

49.95 

(2.57) 

81.18 

(2.59) 

83.43 

(2.82) 

87.14 

(1.98) 

66.65 

(2.15) 

53.00 

(2.21) 

82.87 

(2.20) 

85.79 

(1.96) 

87.50 

(1.69) 

68.17 

(2.28) 

54.06 

(1.95) 

81.66 

(1.90) 

84.14 

(2.00) 

LightGBM 
83.96 

(1.43) 

59.72 

(1.78) 

46.56 

(1.69) 

81.90 

(1.96) 

83.92 

(1.97) 

85.32 

(1.89) 

63.85 

(2.91) 

50.81 

(2.50) 

82.22 

(2.25) 

84.33 

(2.82) 

86.99 

(2.12) 

64.99 

(1.98) 

52.76 

(2.65) 

83.70 

(2.04) 

86.69 

(2.12) 

87.07 

(1.79) 

67.48 

(1.90) 

54.15 

(1.67) 

82.24 

(1.86) 

85.22 

(1.86) 

TMN 
85.34 

(1.12) 

64.17 

(1.21) 

52.07 

(1.46) 

82.15 

(2.01) 

85.30 

(2.02) 

87.58 

(1.60) 

65.57 

(1.46) 

51.98 

(1.84) 

83.51 

(2.34) 

82.08 

(2.83) 

88.72 

(1.20) 

67.60 

(1.70) 

53.62 

(1.63) 

84.44 

(1.96) 

86.03 

(2.17) 

89.77 

(1.36) 

69.45 

(1.60) 

56.72 

(1.41) 

83.19 

(1.88) 

85.65 

(1.91) 

AFF 
85.01 

(1.04) 

62.12 

(1.48) 

49.31 

(1.10) 

82.32 

(1.67) 

85.05 

(1.59) 

87.05 

(1.77) 

65.40 

(1.51) 

54.05 

(1.75) 

84.31 

(2.08) 

86.24 

(1.93) 

87.32 

(1.38) 

67.43 

(1.41) 

53.49 

(1.27) 

85.19 

(1.70) 

86.92 

(1.79) 

88.76 

(1.76) 

69.75 

(1.92) 

55.79 

(1.70) 

84.35 

(1.58) 

86.39 

(1.93) 

FGAN 
85.18 

(1.18) 

63.30 

(0.95) 

50.05 

(1.17) 

83.20 

(1.59) 

85.50 

(1.86) 

88.29 

(1.39) 

66.81 

(1.73) 

54.40 

(2.18) 

85.16 

(2.06) 

86.80 

(2.27) 

88.81 

(1.74) 

68.81 

(1.83) 

56.40 

(1.61) 

85.78 

(1.69) 

87.14 

(1.62) 

90.94 

(1.63) 

71.13 

(1.89) 

59.90 

(1.83) 

84.86 

(1.74) 

85.99 

(1.84) 

CML - - - - - 
86.94 

(1.62) 

65.21 

(1.78) 

50.90 

(2.03) 

84.08 

(2.37) 

85.49 

(2.01) 

87.67 

(1.66) 

66.76 

(1.85) 

55.55 

(1.52) 

84.53 

(2.31) 

87.43 

(2.22) 

89.27 

(1.33) 

69.83 

(2.20) 

56.75 

(1.47) 

83.71 

(2.05) 

85.88 

(2.20) 

LMF - - - - - 
86.80 

(1.78) 

66.60 

(2.09) 

52.93 

(1.68) 

83.56 

(2.11) 

85.45 

(2.21) 

86.94 

(1.57) 

65.09 

(1.91) 

52.66 

(1.65) 

84.20 

(1.99) 

86.85 

(1.87) 

88.78 

(1.91) 

68.49 

(2.11) 

55.83 

(1.55) 

81.20 

(1.95) 

83.59 

(1.96) 

GMU - - - - - 
87.63 

(1.51) 

67.07 

(1.76) 

53.54 

(1.50) 

84.72 

(2.06) 

86.57 

(1.88) 

88.67 

(1.08) 

67.64 

(1.70) 

55.99 

(1.42) 

85.41 

(1.69) 

87.06 

(1.91) 

90.20 

(1.66) 

70.02 

(2.21) 

58.32 

(1.68) 

83.54 

(1.69) 

86.76 

(1.78) 

ARDL 
85.84 

(0.80) 

65.24 

(0.85) 

52.35 

(0.60) 

84.50 

(1.16) 

85.88 

(1.01) 

89.25 

(1.47) 

68.27 

(1.66) 

56.10 

(1.27) 

85.54 

(1.63) 

87.16 

(1.84) 

90.25 

(1.12) 

69.30 

(1.52) 

57.45 

(1.24) 

86.35 

(1.29) 

88.51 

(1.68) 

91.76 

(1.48) 

72.58 

(1.58) 

62.19 

(1.62) 

85.37 

(2.11) 

87.39 

(1.96) 

Notes: “Fin” refers to financial indicators; “Text” refers to current reports; “Net” refers to interfirm networks; The best performance is in boldface. 

 

 

D.1. Predictive Performance of ARDL versus Benchmarks  

To exploit the potential of sentiment and readability information embedded in the current reports, we further extracted sentiment polarity and text readability features to enrich 

the textual input. Specifically, for sentiment analysis, we used the Chinese HowNet sentiment lexicons to capture the positive and negative sentiments expressed in the reports. Using 

the bag-of-words approach (unigrams) with TF-IDF, we calculated the counts and frequencies of sentiment words in each report. Subsequently, we used proportional weighting to 

derive the positive and negative sentiment scores for each report as the sentiment features (i.e., 2-dimension). As for measuring the Chinese financial text readability, we employed 
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two types of Chinese readability indexes to quantify both text capacity and flexibility. This generated 2-dimensional readability features. One of the readability features calculates 

the average word number in each sentence of each report. The other measures the proportion of adverbs and conjunctions in each sentence of each report using the Modern Chinese 

Function Words dictionary. We incorporated these newly introduced features with the semantic features, and used the integrated features as the input in terms of textual modality for 

both ARDL and benchmarks. Table D2 summarizes the results of each method (mean and standard deviation) using single modality, dual modalities, and triple modalities, respectively. 

Table D2. Predictive Performance of ARDL versus Benchmarks (%). 

Method Fin Fin+Text Fin+Net Fin+Text+Net 
Metrics AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall 

LR 
79.10 

(1.91) 

58.36 

(1.74) 

45.03 

(1.86) 

77.89 

(1.74) 

81.62 

(1.84) 

83.99 

(2.75) 

62.25 

(2.74) 

47.24 

(2.88) 

79.65 

(2.77) 

81.66 

(2.79) 

85.50 

(2.72) 

64.43 

(2.84) 

50.64 

(2.59) 

80.35 

(2.47) 

83.72 

(2.64) 

82.01 

(2.35) 

61.83 

(2.13) 

46.74 

(2.32) 

78.32 

(2.33) 

81.10 

(2.39) 

SVM 
82.28 

(1.85) 

58.68 

(1.83) 

45.33 

(1.57) 

80.19 

(1.74) 

81.37 

(1.76) 

84.75 

(2.27) 

63.55 

(2.64) 

49.50 

(2.46) 

81.30 

(2.29) 

83.53 

(2.41) 

85.84 

(1.93) 

65.65 

(2.43) 

51.59 

(2.71) 

82.38 

(1.83) 

85.40 

(1.98) 

83.66 

(2.38) 

63.83 

(2.57) 

52.67 

(2.46) 

80.16 

(1.79) 

83.73 

(1.77) 

XGB 
84.68 

(1.50) 

61.09 

(1.53) 

46.88 

(1.76) 

82.82 

(2.12) 

84.04 

(2.12) 

86.21 

(2.28) 

64.96 

(2.18) 

50.11 

(2.49) 

82.04 

(2.34) 

83.90 

(2.91) 

87.14 

(1.98) 

66.65 

(2.15) 

53.00 

(2.21) 

82.87 

(2.20) 

85.79 

(1.96) 

87.70 

(1.55) 

68.56 

(2.11) 

54.70 

(1.86) 

81.78 

(2.12) 

84.50 

(2.17) 

LightGBM 
83.96 

(1.43) 

59.72 

(1.78) 

46.56 

(1.69) 

81.90 

(1.96) 

83.92 

(1.97) 

85.80 

(2.04) 

64.29 

(2.68) 

51.42 

(2.45) 

83.02 

(2.14) 

85.10 

(2.70) 

86.99 

(2.12) 

64.99 

(1.98) 

52.76 

(2.65) 

83.70 

(2.04) 

86.69 

(2.12) 

87.55 

(2.07) 

67.90 

(2.04) 

54.48 

(1.80) 

82.73 

(2.08) 

85.42 

(1.88) 

TMN 
85.34 

(1.12) 

64.17 

(1.21) 

52.07 

(1.46) 

82.15 

(2.01) 

85.30 

(2.02) 

87.61 

(1.64) 

65.68 

(1.46) 

52.11 

(1.85) 

83.78 

(2.37) 

82.16 

(2.85) 

88.72 

(1.20) 

67.60 

(1.70) 

53.62 

(1.63) 

84.44 

(1.96) 

86.03 

(2.17) 

89.79 

(1.39) 

69.49 

(1.63) 

56.72 

(1.36) 

83.31 

(1.83) 

85.76 

(1.89) 

AFF 
85.01 

(1.04) 

62.12 

(1.48) 

49.31 

(1.10) 

82.32 

(1.67) 

85.05 

(1.59) 

87.23 

(1.78) 

65.40 

(1.48) 

54.07 

(1.73) 

84.52 

(2.05) 

86.25 

(1.91) 

87.32 

(1.38) 

67.43 

(1.41) 

53.49 

(1.27) 

85.19 

(1.70) 

86.92 

(1.79) 

88.76 

(1.71) 

69.76 

(1.94) 

55.94 

(1.70) 

84.49 

(1.55) 

86.44 

(1.88) 

FGAN 
85.18 

(1.18) 

63.30 

(0.95) 

50.05 

(1.17) 

83.20 

(1.59) 

85.50 

(1.86) 

88.51 

(1.36) 

66.83 

(1.70) 

54.40 

(2.20) 

85.17 

(2.08) 

86.91 

(2.23) 

88.81 

(1.74) 

68.81 

(1.83) 

56.40 

(1.61) 

85.78 

(1.69) 

87.14 

(1.62) 

91.02 

(1.62) 

71.19 

(1.91) 

59.93 

(1.86) 

84.86 

(1.71) 

85.99 

(1.81) 

CML - - - - - 
86.96 

(1.62) 

65.40 

(1.74) 

51.02 

(2.05) 

84.20 

(2.35) 

85.51 

(1.96) 

87.67 

(1.66) 

66.76 

(1.85) 

55.55 

(1.52) 

84.53 

(2.31) 

87.43 

(2.22) 

89.30 

(1.37) 

69.84 

(2.19) 

56.85 

(1.45) 

83.71 

(2.01) 

85.88 

(2.20) 

LMF - - - - - 
86.80 

(1.79) 

66.74 

(2.08) 

53.02 

(1.72) 

83.83 

(2.12) 

85.59 

(2.24) 

86.94 

(1.57) 

65.09 

(1.91) 

52.66 

(1.65) 

84.20 

(1.99) 

86.85 

(1.87) 

88.80 

(1.93) 

68.56 

(2.10) 

56.01 

(1.59) 

81.20 

(1.95) 

83.65 

(1.96) 

GMU - - - - - 
87.64 

(1.46) 

67.15 

(1.75) 

53.67 

(1.49) 

84.75 

(2.07) 

86.59 

(1.89) 

88.67 

(1.08) 

67.64 

(1.70) 

55.99 

(1.42) 

85.41 

(1.69) 

87.06 

(1.91) 

90.24 

(1.66) 

70.08 

(2.25) 

58.35 

(1.69) 

83.74 

(1.67) 

86.82 

(1.78) 

ARDL 
85.84 

(0.80) 

65.24 

(0.85) 

52.35 

(0.60) 

84.50 

(1.16) 

85.88 

(1.01) 

89.25 

(1.50) 

68.27 

(1.63) 

56.13 

(1.26) 

85.56 

(1.67) 

87.28 

(1.80) 

90.25 

(1.12) 

69.30 

(1.52) 

57.45 

(1.24) 

86.35 

(1.29) 

88.51 

(1.68) 

91.76 

(1.46) 

72.59 

(1.54) 

62.21 

(1.62) 

85.39 

(2.11) 

87.51 

(1.92) 

Notes: “Fin” refers to financial indicators; “Text” refers to current reports; “Net” refers to interfirm networks; The textual input comprises semantic, sentiment, and readability features. The best 

performance is in boldface.
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Appendix E. Description of Multimodal Data of Listed Companies 

We collected 5,206 listed companies in the Shanghai Stock Exchange and Shenzhen Stock Exchange 

from 2019 to 2022. We used multimodal data of each company by end of 2019 to predict financial distress 

of the year 2022. Based on ST, there were 118 financial distressed companies (accounting for 2.26% of the 

total) and 5,088 normal operated companies. For predictors of financial distress, we collected data of the 

aforementioned three modalities, i.e., financial ratios, current reports, and interfirm networks. 

E.1. Description of Financial Ratios 

We collected 30 financial ratios in the 2019 annual report of each company from the CSMAR dataset. 

We divided the financial ratios into five groups based on the aspect of financial conditions they reflect, i.e., 

profitability, solvency, development capacity, operational capabilities, and finance structure. Table E1 

summarizes the descriptive statistics of these financial ratios. 

Table E1. Description of Ratio Groups. 

Category  Feature Min Max Mean S.D. 

Profitability 

X1 Return on assets -1.46  1.72  0.04  0.11  

X2 Return on equity -80.29  6.23  0.03  1.30  

X3 Net profit ratio -1,724.40  3,477,431.34  843.54  49,732.37  

X4 Net profit to current asset -8.70  10.54  0.07  0.55  

X5 Net profit to fixed asset -5,825.27  24,217.53  17.45  614.14  

X6 Ebit to asset -0.65  31.87  0.05  0.55  

Solvency 

X7 Current ratio 0.00  80.66  2.50  3.03  

X8 Quick ratio 0.00  52.14  2.03  2.75  

X9 Asset liability ratio 0.01  2.12  0.42  0.21  

X10 Debt equity ratio -153.09  102.98  3.14  6.32  

X11 Debt tangible equity ratio -5,062.53  104,835.85  210.79  1,611.81  

X12 Current liability coverage -16.12  133.67  0.24  1.90  

Development  

capacity 

X13 
Operating revenue growth 

rate 

-13.09  2,637.55  2.82  48.23  

X14 Net profit growth rate -2,823.20  60.05  -1.60  40.80  

X15 Assets growth rate -0.93  77.70  0.19  1.32  

X16 
Net operation cash flow 

growth rate 

-211,427.84  253,290.13  260.83  7,947.75  

X17 
Operation cash per share 

growth rate 

-213,946.92  135,166.67  344.07  6,713.55  

X18 Equity growth rate -250.93  259.82  0.23  7.86  

Operational 

capabilities 

X19 Inventory turning rate 0.00  380,072.47  158.14  5,492.41  

X20 Receivable turnover ratio  0.00  4,332,756.29  909.74  60,092.26  

X21 Accrued payable rate 0.00  61,277.37  36.24  1,082.41  

X22 Equity rate  0.00  119.75  4.92  5.47  
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X23 Net operating cycle  -578,446.36  114,707.73  303.98  1,970.54  

X24 Working capital total rate 0.00  4,615.26  102.39  169.79  

Finance 

structure 

X25 Current asset ratio 0.00  1.00  0.59  0.22  

X26 Fixed asset ratio 0.00  0.95  0.19  0.15  

X27 Equity to fixed asset ratio -715.51  7,208.71  19.52  133.65  

X28 Current liability ratio 0.00  1.01  0.82  0.20  

X29 Equity ratio -1.12  0.99  0.58  0.21  

X30 Working capital to equity -3.10  2.42  0.96  0.11  

 

 

E.2. Description of Current Reports 

We collected all the current reports disclosed by each company from the official disclosure platform4 

of listed companies in 2019, resulting in 244,226 current reports. The mean and standard deviation of the 

number of current reports per company are 46.912 and 45.451, respectively. Similarly, we utilized Tesseract 

OCR technology to extract text from images in the current reports. Figure E1 illustrates the distribution of 

current reports among companies. 

 
Figure E1. Distribution of Current Reports among the Listed Companies. 

 

 

 

4 The platform (http://eid.csrc.gov.cn/) offers publicly available information about listed companies in China. 
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E.3. Description of Interfirm Networks 

We collected information regarding the neighbor companies of the 5,206 listed companies in our 

dataset from Qichacha and built interfirm networks. Based on the directors, supervisors, and senior 

management (DSS) relationships between companies, we identified 191,065 neighbor companies of the 

original 5,206 companies. Table E2 summarizes the descriptive statistics of the DSS networks. For 

attributes to characterize each node (i.e., company) in DSS networks, we selected demographic attributes 

(i.e., company age, district, industry type, registered capital, number of patents, and percentage of insider 

ownership) and risk event attributes (i.e., administrative penalties, equity pledges, and loan disputes). The 

risk event attributes were set to 1 if the company was involved in the corresponding risk events in 2019, 

and 0 otherwise. 

Table E2. Descriptive Statistics of the Interfirm Networks. 

 Directors/Supervisors/Senior Management 

Average number of individuals per company 16.098 

Average number of neighbor companies per company 36.701 

Average number of companies per individual 10.882 
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Appendix F. Predictive Performance of ARDL versus Benchmarks on the Multimodal Dataset of Listed Companies 

Table F1. Predictive Performance of ARDL versus Benchmarks (%). 

Method Fin Fin+Text Fin+Net Fin+Text+Net 

Metrics AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall 

LR 
83.91 

(2.16) 

60.95 

(1.85) 

47.47 

(1.68) 

81.13 

(1.71) 

83.75 

(1.82) 

85.46 

(2.83) 

63.35 

(2.64) 

48.93 

(2.59) 

82.49 

(2.75) 

84.31 

(2.37) 

87.52 

(2.81) 

67.64 

(2.36) 

53.24 

(2.60) 

83.14 

(2.56) 

85.76 

(2.28) 

87.77 

(2.32) 

68.88 

(1.74) 

53.71 

(2.08) 

83.72 

(2.26) 

85.93 

(2.56) 

SVM 
84.58 

(1.91) 

61.93 

(1.77) 

47.77 

(1.86) 

82.79 

(1.53) 

83.95 

(1.98) 

85.92 

(2.16) 

62.19 

(2.26) 

50.89 

(2.67) 

84.77 

(1.82) 

84.83 

(2.37) 

87.87 

(2.01) 

68.25 

(1.95) 

53.48 

(2.49) 

84.63 

(1.98) 

87.46 

(1.93) 

88.90 

(2.18) 

68.65 

(2.68) 

55.36 

(2.47) 

85.42 

(1.95) 

88.09 

(1.58) 

XGB 
86.65 

(1.47) 

63.21 

(1.24) 

49.03 

(1.61) 

85.55 

(2.19) 

86.16 

(1.97) 

87.91 

(2.04) 

65.91 

(1.87) 

51.03 

(1.99) 

86.91 

(2.30) 

86.51 

(2.53) 

89.31 

(1.75) 

68.48 

(1.75) 

55.56 

(2.17) 

87.88 

(1.75) 

86.99 

(1.88) 

90.17 

(2.22) 

71.36 

(1.89) 

57.06 

(1.36) 

88.97 

(2.13) 

89.96 

(1.98) 

LightGBM 
86.78 

(1.33) 

62.55 

(1.39) 

48.99 

(1.26) 

84.34 

(2.07) 

86.74 

(1.51) 

87.05 

(2.17) 

66.12 

(2.85) 

52.50 

(2.42) 

85.96 

(2.36) 

86.85 

(2.54) 

88.95 

(1.55) 

67.46 

(1.87) 

55.66 

(2.46) 

85.32 

(2.19) 

88.55 

(2.09) 

89.96 

(1.72) 

70.14 

(2.12) 

56.94 

(2.31) 

88.51 

(1.57) 

89.31 

(2.05) 

TMN 
85.22 

(1.28) 

63.42 

(1.36) 

51.68 

(1.25) 

85.34 

(1.97) 

87.15 

(1.89) 

89.12 

(1.50) 

66.24 

(1.02) 

53.56 

(1.40) 

86.44 

(2.03) 

88.26 

(2.82) 

91.07 

(1.27) 

70.12 

(1.39) 

56.66 

(1.17) 

86.26 

(1.76) 

89.82 

(1.71) 

92.61 

(1.19) 

72.07 

(1.73) 

58.97 

(1.62) 

89.15 

(1.95) 

90.45 

(1.86) 

AFF 
87.06 

(1.39) 

65.32 

(1.52) 

50.36 

(0.94) 

85.04 

(1.17) 

88.01 

(1.28) 

89.01 

(1.81) 

66.64 

(1.38) 

54.57 

(1.88) 

85.99 

(2.29) 

88.36 

(1.84) 

89.99 

(1.47) 

69.83 

(1.44) 

56.12 

(1.18) 

87.51 

(1.53) 

88.65 

(2.14) 

91.52 

(1.35) 

72.96 

(1.61) 

58.24 

(1.25) 

88.37 

(1.55) 

88.31 

(1.47) 

FGAN 
87.31 

(1.15) 

65.47 

(1.31) 

53.25 

(0.83) 

85.93 

(1.62) 

87.74 

(1.86) 

89.63 

(1.57) 

67.33 

(1.89) 

55.18 

(1.96) 

86.96 

(1.91) 

87.99 

(1.95) 

91.55 

(1.46) 

71.27 

(1.58) 

58.84 

(1.44) 

88.36 

(1.74) 

90.01 

(1.79) 

92.43 

(1.74) 

73.75 

(1.48) 

63.32 

(1.71) 

88.77 

(1.26) 

90.28 

(1.55) 

CML 
- - - - - 88.77 

(1.61) 

65.82 

(1.97) 

52.54 

(2.08) 

84.82 

(2.19) 

86.88 

(2.14) 

89.77 

(1.72) 

69.07 

(1.73) 

57.42 

(1.61) 

86.65 

(2.21) 

89.61 

(2.09) 

91.14 

(1.47) 

71.73 

(2.22) 

58.66 

(1.25) 

87.95 

(2.09) 

88.35 

(2.22) 

LMF 
- - - - - 86.79 

(1.55) 

64.33 

(1.67) 

51.43 

(1.78) 

84.81 

(2.22) 

87.26 

(2.36) 

90.18 

(1.56) 

68.13 

(1.99) 

56.92 

(1.85) 

86.57 

(1.71) 

88.27 

(1.48) 

90.61 

(1.64) 

71.51 

(2.05) 

57.74 

(1.52) 

86.44 

(1.87) 

86.44 

(1.93) 

GMU 
- - - - - 88.89 

(1.69) 

68.84 

(1.46) 

54.83 

(1.56) 

85.78 

(2.24) 

88.22 

(1.43) 

91.31 

(1.32) 

70.04 

(1.31) 

59.10 

(1.26) 

88.38 

(1.59) 

89.43 

(1.51) 

92.36 

(1.16) 

72.75 

(2.18) 

60.62 

(1.65) 

89.78 

(1.87) 

89.03 

(1.47) 

ARDL 
88.07 

(0.99) 

68.02 

(0.86) 

54.53 

(0.95) 

86.31 

(1.05) 

88.68 

(1.11) 

90.39 

(1.52) 

69.05 

(1.77) 

56.68 

(1.39) 

87.10 

(1.42) 

88.81 

(1.39) 

92.12 

(1.41) 

72.46 

(1.68) 

59.61 

(1.32) 

89.97 

(1.16) 

90.88 

(1.62) 

94.25 

(1.57) 

75.62 

(1.32) 

64.01 

(1.62) 

91.28 

(1.99) 

90.68 

(1.89) 

Notes: “Fin” refers to financial indicators; “Text” refers to current reports; “Net” refers to interfirm networks. The best performance is in boldface. 

 

Table F2. Representation Performance of ARDL versus Benchmarks (%). 

Method LR SVM XGB LightGBM 
Metrics AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall 

TMN 
91.83 

(1.71) 

71.37 

(1.68) 

61.03 

(1.85) 

89.47 

(1.79) 

89.16 

(1.55) 

92.23 

(1.52) 

70.84 

(1.67) 

61.23 

(1.84) 

89.69 

(1.78) 

88.01 

(1.64) 

93.76 

(1.61) 

75.22 

(1.98) 

64.57 

(1.53) 

89.71 

(1.69) 

89.51 

(1.56) 

93.07 

(1.60) 

72.68 

(2.06) 

62.48 

(1.52) 

85.66 

(1.59) 

86.78 

(1.64) 

AFF 
91.09 

(1.94) 

71.07 

(1.83) 

59.93 

(1.43) 

89.69 

(1.69) 

88.17 

(1.73) 

91.19 

(1.53) 

71.51 

(1.91) 

58.24 

(1.65) 

88.08 

(1.64) 

88.42 

(1.97) 

92.82 

(1.73) 

74.71 

(2.13) 

62.02 

(1.56) 

88.85 

(1.79) 

87.35 

(1.42) 

92.23 

(1.67) 

72.12 

(1.95) 

61.06 

(1.73) 

86.34 

(1.22) 

86.54 

(1.63) 

FGAN 
92.28 

(1.55) 

72.45 

(1.78) 

62.45 

(1.54) 

88.85 

(1.64) 

89.31 

(1.29) 

92.45 

(1.57) 

72.83 

(2.05) 

62.75 

(1.72) 

89.46 

(1.77) 

88.76 

(1.58) 

92.49 

(1.79) 

76.67 

(1.65) 

64.84 

(1.46) 

91.25 

(1.44) 

88.91 

(1.57) 

94.01 

(1.82) 

73.87 

(1.78) 

63.13 

(1.42) 

87.39 

(1.90) 

88.08 

(1.73) 

CML 
91.46 

(1.43) 

69.79 

(1.91) 

59.08 

(1.86) 

87.26 

(1.48) 

87.03 

(1.52) 

89.86 

(1.90) 

69.17 

(1.97) 

57.95 

(1.88) 

87.63 

(1.55) 

87.46 

(1.77) 

91.80 

(1.67) 

73.74 

(1.84) 

61.53 

(1.92) 

88.62 

(1.84) 

87.44 

(1.54) 

93.05 

(1.65) 

71.82 

(2.08) 

60.73 

(1.32) 

86.32 

(1.75) 

86.92 

(1.38) 

LMF 
90.31 

(1.73) 

69.60 

(1.99) 

57.21 

(1.58) 

88.63 

(1.78) 

86.74 

(1.61) 

89.86 

(1.71) 

68.81 

(2.16) 

57.21 

(1.61) 

86.01 

(1.68) 

87.35 

(2.15) 

91.24 

(1.85) 

72.76 

(1.97) 

60.64 

(1.55) 

88.89 

(1.89) 

86.18 

(1.93) 

92.70 

(2.12) 

69.26 

(2.35) 

58.75 

(1.88) 

85.94 

(1.83) 

85.23 

(1.58) 

GMU 
92.89 

(1.51) 

73.05 

(1.59) 

62.75 

(1.51) 

88.01 

(1.37) 

88.75 

(1.49) 

91.16 

(1.57) 

73.62 

(2.17) 

63.33 

(1.78) 

89.16 

(1.65) 

87.38 

(1.56) 

93.78 

(1.51) 

76.26 

(1.61) 

64.73 

(1.46) 

92.28 

(1.57) 

88.66 

(1.83) 

92.32 

(1.47) 

72.83 

(1.49) 

63.97 

(1.31) 

86.56 

(1.36) 

88.51 

(1.42) 

ARDL 
93.74 

(1.42) 

73.71 

(1.36) 

63.48 

(1.13) 

90.85 

(1.29) 

90.56 

(1.34) 

93.79 

(1.38) 

75.68 

(1.59) 

65.15 

(1.32) 

90.63 

(1.34) 

89.07 

(1.46) 

95.96 

(1.26) 

77.42 

(1.45) 

66.76 

(1.29) 

93.69 

(1.16) 

91.92 

(1.51) 

94.65 

(1.29) 

74.79 

(1.66) 

65.15 

(1.29) 

87.79 

(1.12) 

89.54 

(1.27) 

Note: The results of representation performance of each method using trimodal data; The best performance is in boldface.
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Appendix G. Description of Multi-View Data of Listed Companies 

We collected 5,206 listed companies in the Shanghai Stock Exchange and Shenzhen Stock Exchange 

from 2019 to 2022. We used multi-view data of each company by end of 2019 to predict financial distress 

of the year 2022. For predictors of financial distress, we collected five views of data from the CSMAR and 

CNRDS (Chinese Research Data Services) database, including financial indicator view, annual report view, 

stock forum view, legal judgment view, and financial news view. 

G.1. Description of Financial Indicator View 

For the financial indicator view, we selected widely used financial ratios from the aspects of solvency, 

profitability, operating capacity, development capacity, and cash flow, resulting in 25 features. Table G1 

summarizes the features in the financial indicator view. 

Table G1. Description of Financial Indicator View. 

No. Feature Min Max Mean S.D. 

1 Current ratio 0.12 47.53 2.45 2.47 

2 Quick ratio 0.02 41.58 1.97 2.26 

3 Interest coverage ratio -2,750.60 104,760.40 98.68 1,684.93 

4 Net cash flow from operating activities -5.67 6.80 0.24 0.49 

5 Debt to asset ratio 0.03 1.50 0.39 0.18 

6 Debt to equity ratio -2.83 70.73 0.95 2.02 

7 Capital accumulation rate -0.94 37.76 0.33 0.96 

8 Total assets growth rate -0.60 13.35 0.27 0.54 

9 Net profit growth rate -48.88 455.80 0.72 9.24 

10 Administrative expenses growth rate -0.87 10.21 0.20 0.47 

11 Stockholder’s equity growth ratio -0.91 153.58 0.39 2.52 

12 Accounts receivable turnover ratio 0.34 47,889,094.68 11,306.84 742,128.60 

13 Inventory turnover ratio 0.00 57,980.34 74.47 1,419.03 

14 Current assets turnover ratio 0.00 12.70 1.17 0.90 

15 Total assets turnover ratio 0.00 10.28 0.62 0.52 

16 Equity turnover ratio 0.00 65.58 1.34 2.37 

17 Net profit cash coverage -1.21 0.54 0.08 0.07 

18 Net cash content of operating profit -1.22 0.50 0.06 0.07 

19 Cash to total assets recovery ratio -16.89 1.32 0.09 0.34 

20 Price to cash flow ratio -0.44 0.98 0.32 0.16 

21 Return on assets ratio -331.62 3.78 -0.02 5.45 

22 Net profit margin on total assets -596.25 594.68 1.06 18.53 

23 Return on equity  -466.47 188.46 0.62 9.61 

24 Gross margin ratio -0.68 0.44 0.05 0.08 

25 Net profit margin -90.97 7,032.79 2.84 110.19 
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G.2. Description of Annual Reports View 

For the annual report view, we constructed 13 features using the text of annual reports and management 

discussion and analysis (MD&A). We focused on statistical (e.g., number of words) and sentiment features 

of the texts. The Loughran-McDonald (LM) and NTU sentiment lexicons were used for annual reports and 

the Loughran and McDonald sentiment lexicon was used for MD&A. Table G2 summarizes the features in 

the annual report view. 

Table G2. Description of Annual Reports View. 

No. Feature Min Max Mean S.D. 

1 Number of characters in annual report 53,015.43 906,433.10 165,254.70 40,066.79 

2 Number of words in annual report 15,204.01 129,857.30 49,138.35 10,577.57 

3 Number of sentences in annual report 232.55 22,447.36 1,096.58 459.17 

4 Number of positive words (LM) in annual report 1,031.95 8,368.96 3,598.02 747.15 

5 Number of negative words (LM) in annual report 781.18 10,053.80 3,538.54 706.80 

6 Sentiment tone (LM) of annual report 1,151.72 11,633.34 3,556.26 799.16 

7 Number of positive words (NTU) in annual report 294.44 3,544.82 1,466.56 278.27 

8 Number of negative words (NTU) in annual report -0.20 0.23 0.00 0.05 

9 Sentiment tone (NTU) of annual report 0.13 0.64 0.40 0.08 

10 Number of sentences in MD&A 64.44 1,613.41 423.22 183.65 

11 Number of words in MD&A 41.40 863.63 160.98 76.59 

12 Number of positive words in MD&A 16.20 792.79 135.07 67.04 

13 Number of negative words in MD&A 1,251.41 80,699.02 8,228.39 4,091.14 

 

 

G.3. Description of Stock Forum View 

For the stock forum view, we constructed 20 features based on posts and comments on Guba, one of 

the largest online stock forums in China, from the first quarter (Q1) to the fourth quarter (Q4) in 2019. 

Online stock forum is one of the major platforms for individual investors to communicate with each other 

and valuable information may be conveyed during communication in form of posts and comments. The 

interaction and dissemination of information, as well as the emergence and fluctuation of sentiment, may 

reflect the business and financial conditions of a company to some extent, and thus may be valuable in 

predicting financial distress. We therefore selected the stock forum information as another data view to 

complement the financial indicator view. Table G3 summarizes the features in the stock forum view. 

Table G3. Description of Stock Forum View. 

No. Feature Min Max Mean S.D. 

1 Number of posts in Q1 0.00 30,826.02 1,660.58 2,099.85 
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2 Number of positive posts in Q1 0.00 7,369.55 515.51 558.82 

3 Number of negative posts in Q1 0.00 6,492.71 403.51 465.73 

4 Number of reads of posts in Q1 0.00 63,320,303.95 1,853,983.74 2,796,212.74 

5 Number of comments of posts in Q1 0.00 58,965.72 2,371.49 4,052.84 

6 Number of posts in Q2 0.00 26,122.97 1,894.01 2,132.96 

7 Number of positive posts in Q2 0.00 8,552.96 587.77 583.46 

8 Number of negative posts in Q2 0.00 6,156.20 464.26 490.53 

9 Number of reads of posts in Q2 0.00 52,320,307.08 3,150,438.77 3,694,050.21 

10 Number of comments of posts in Q2 0.00 59,012.84 2,854.44 4,510.25 

11 Number of posts in Q3 0.00 64,856.66 2,689.16 2,542.14 

12 Number of positive posts in Q3 0.00 17,950.39 906.10 754.38 

13 Number of negative posts in Q3 0.00 14,080.44 613.71 591.72 

14 Number of reads of posts in Q3 0.00 109,451,109.90 2,980,464.89 4,070,931.37 

15 Number of comments of posts in Q3 0.00 143,107.86 2,654.35 5,051.47 

16 Number of posts in Q4 19.64 43,822.46 1,908.11 2,139.44 

17 Number of positive posts in Q4 5.44 12,492.79 552.88 565.59 

18 Number of negative posts in Q4 1.84 8,851.85 432.84 487.31 

19 Number of reads of posts in Q4 14,093.64 114,699,384.46 3,240,467.11 4,374,223.53 

20 Number of comments of posts in Q4 3.96 125,939.52 2,568.72 5,277.42 

 

 

G.4. Description of Legal Judgment View 

For the legal judgment view, we constructed 12 features based on legal judgments of each company in 

2019. Legal judgment information helps to evaluate the credit risk of a company. Each legal judgment 

reflects the dispute of a company in the process of production and operation, and adverse outcomes (e.g., 

compensation) may aggravate financial risk. In this regard, legal judgments may also provide 

complementary information to financial information for financial distress prediction. Table G4 summarizes 

the features in the legal judgment view. 

Table G4. Description of Legal Judgment View. 

No. Feature Min Max Mean S.D. 

1 Number of judgments in role of plaintiff 0.00 69.74 1.90 4.41 

2 Number of civil litigations in role of plaintiff 0.00 20.94 0.15 1.02 

3 Number of criminal litigations in role of plaintiff 0.00 58.19 1.62 3.94 

4 Number of arbitrations in role of plaintiff 0.00 11.07 0.17 0.68 

5 Amount involved in judgments in role of plaintiff 0.00 508,277.92 6,167.75 29,362.66 

6 Number of loan dispute cases in role of plaintiff 0.00 77.11 2.22 4.81 

7 Number of judgments in role of defendants 0.00 26.59 0.08 0.96 

8 Number of civil litigations in role of defendants 0.00 76.12 1.99 4.32 

9 Number of criminal litigations in role of defendants 0.00 2.77 0.03 0.29 

10 Number of arbitrations in role of defendants 0.00 369,096.82 6,768.60 25,188.97 

11 Amount involved in judgments in role of defendants 0.00 68.95 1.82 4.87 

12 Number of loan dispute cases in role of defendants 0.00 22.08 0.14 1.01 
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G.5. Description of Financial News View 

For the financial news view, we constructed 18 features based on the financial news and search trends 

related to each company from Q1 to Q4 in 2019. Financial news exposes positive and negative events 

related to a company and search trends reflect the degree of attention of users (e.g., investors). Both these 

two types of information may be beneficial for reflecting business condition and development potential of 

a company, thus may contribute to financial distress prediction. Table G5 summarizes the features in the 

financial news view. 

Table G5. Description of Financial News View. 

No. Feature Min Max Mean S.D. 

1 Number of negative news in Q1 0.00 1,201.09 7.69 29.09 

2 Number of positive news in Q1 0.00 804.55 9.91 28.62 

3 Number of negative news in Q2 0.00 1,499.58 9.78 34.65 

4 Number of positive news in Q2 0.00 1,045.84 12.29 37.13 

5 Number of negative news in Q3 0.00 2,732.78 29.61 93.36 

6 Number of positive news in Q3 0.00 2,893.13 50.10 141.18 

7 Number of negative news in Q4 0.00 1,804.04 30.57 102.96 

8 Number of positive news in Q4 0.00 4,122.03 54.26 189.55 

9 Number of negative news related to executives 0.00 1,397.73 11.97 41.17 

10 Number of positive news related to executives 0.00 1,797.46 11.58 56.13 

11 Index of searches (stock code) in Q1 0.00 260,616.29 28,497.32 20,932.04 

12 Index of searches (all related keywords) in Q1 0.00 2,031,094.99 96,619.29 101,766.97 

13 Index of searches (stock code) in Q2 0.00 321,050.27 26,445.86 21,463.11 

14 Index of searches (all related keywords) in Q2 0.00 1,811,917.57 95,292.83 104,879.97 

15 Index of searches (stock code) in Q3 0.00 241,874.42 27,440.94 19,631.34 

16 Index of searches (all related keywords) in Q3 0.00 1,963,948.50 97,580.04 112,470.64 

17 Index of searches (stock code) in Q4 0.00 458,537.25 23,720.80 17,714.82 

18 Index of searches (all related keywords) in Q4 0.00 1,946,007.42 82,812.14 98,088.39 
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Appendix H. Predictive and Representation Performance of General Variant of ARDL versus Benchmarks on the Multi-View Dataset of Listed Companies 

Table 5. Predictive Performance of General Variant of ARDL versus Benchmarks (%). 

Method Finance Indicator View Non-Financial Indicator Views All Views 

Metrics AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall 

LR 
76.79 

(2.43) 

59.39 

(2.32) 

50.04 

(2.33) 

74.83 

(2.22) 

76.19 

(1.67) 

77.07 

(2.56) 

58.44 

(2.11) 

49.19 

(1.98) 

76.68 

(2.20) 

76.82 

(1.51) 

81.42 

(2.09) 

63.48 

(1.88) 

49.74 

(1.78) 

76.77 

(2.78) 

78.96 

(1.55) 

SVM 
75.63 

(2.16) 

60.03 

(1.92) 

50.53 

(1.92) 

74.64 

(1.99) 

75.47 

(2.15) 

77.52 

(2.29) 

61.89 

(1.77) 

51.47 

(1.42) 

77.83 

(1.95) 

78.85 

(1.78) 

81.46 

(1.93) 

64.28 

(1.59) 

48.72 

(1.86) 

78.21 

(1.65) 

79.58 

(1.84) 

XGB 
80.01 

(2.13) 

62.96 

(2.08) 

53.78 

(1.99) 

79.22 

(2.06) 

81.27 

(1.65) 

81.91 

(1.63) 

64.51 

(1.57) 

52.89 

(1.97) 

78.05 

(1.84) 

78.03 

(1.29) 

83.33 

(1.83) 

65.45 

(1.94) 

52.15 

(1.81) 

78.25 

(1.71) 

80.04 

(1.59) 

LightGBM 
81.32 

(2.40) 

63.05 

(2.02) 

52.72 

(2.12) 

80.79 

(2.18) 

80.39 

(1.42) 

81.01 

(1.65) 

63.19 

(1.51) 

52.75 

(1.93) 

79.42 

(1.91) 

79.45 

(1.31) 

82.62 

(2.14) 

65.31 

(1.98) 

51.59 

(2.08) 

79.43 

(2.16) 

81.57 

(1.26) 

TMNv 
82.45 

(1.62) 

63.54 

(1.81) 

53.65 

(1.54) 

81.01 

(1.47) 

82.21 

(1.84) 

82.87 

(1.67) 

63.92 

(1.80) 

53.64 

(1.45) 

80.64 

(1.52) 

80.66 

(1.82) 

84.64 

(1.46) 

66.89 

(1.78) 

54.06 

(1.32) 

81.26 

(1.28) 

82.19 

(1.75) 

AFF 
81.68 

(2.09) 

62.79 

(1.63) 

51.66 

(1.93) 

81.71 

(1.95) 

81.11 

(1.74) 

82.60 

(2.16) 

63.65 

(1.46) 

51.75 

(1.62) 

79.74 

(1.86) 

80.48 

(1.61) 

84.46 

(1.82) 

66.06 

(1.52) 

52.73 

(1.67) 

79.99 

(1.85) 

81.28 

(1.72) 

FGANv 
83.07 

(1.52) 

64.02 

(1.66) 

55.12 

(1.76) 

82.75 

(1.39) 

83.83 

(1.33) 

83.43 

(1.63) 

65.65 

(1.46) 

53.37 

(1.42) 

81.26 

(1.28) 

82.96 

(1.22) 

86.35 

(1.32) 

66.79 

(1.37) 

53.40 

(1.53) 

81.93 

(1.15) 

83.97 

(1.09) 

CML 
- - - - - 

81.67 

(2.52) 

63.11 

(2.04) 

53.17 

(1.52) 

79.17 

(1.96) 

80.42 

(2.05) 

84.35 

(1.64) 

66.11 

(1.09) 

52.11 

(1.77) 

81.35 

(1.37) 

81.95 

(1.36) 

LMF 
- - - - - 

79.65 

(2.23) 

62.96 

(2.51) 

52.38 

(1.85) 

78.31 

(1.97) 

78.55 

(2.36) 

83.66 

(1.63) 

64.04 

(1.94) 

50.88 

(1.51) 

78.69 

(1.57) 

79.84 

(1.85) 

GMU 
- - - - - 

82.76 

(1.79) 

64.01 

(1.43) 

53.09 

(1.52) 

80.07 

(1.43) 

81.32 

(1.91) 

86.22 

(1.77) 

67.68 

(1.58) 

54.98 

(1.77) 

82.97 

(1.69) 

83.68 

(1.93) 

ARDLv 
83.76 

(1.21) 

65.42 

(1.55) 

57.07 

(1.97) 

82.94 

(1.12) 

83.88 

(1.85) 

84.96 

(1.69) 

66.95 

(1.12) 

54.34 

(1.71) 

83.44 

(1.39) 

84.05 

(1.64) 

86.82 

(1.12) 

68.15 

(1.33) 

55.95 

(1.83) 

85.45 

(0.98) 

86.45 

(1.49) 

Notes: TMNv, FGANv, and ARDLv refer to the variants of the TMN, FGAN, and ARDL methods, each of which drops the representation learning modules; The best performance is in boldface. 

 

Table 6. Representation Performance of General Variant of ARDL versus Benchmarks (%). 

Method LR SVM XGB LightGBM 
Metrics AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall AUC KS H Precise Recall 

TMNv 
84.15 

(1.69) 

64.01 

(2.08) 

54.82 

(1.92) 

77.52 

(1.83) 

78.63 

(1.92) 

84.16 

(1.83) 

63.86 

(1.84) 

53.41 

(1.36) 

77.35 

(1.69) 

77.89 

(2.02) 

85.31 

(1.82) 

65.61 

(1.67) 

54.19 

(1.68) 

77.84 

(1.92) 

78.75 

(1.52) 

84.38 

(1.49) 

65.83 

(1.68) 

55.23 

(1.55) 

78.11 

(1.87) 

79.31 

(1.79) 

AFF 
83.95 

(1.77) 

64.17 

(1.99) 

54.65 

(1.61) 

78.09 

(1.72) 

78.71 

(1.61) 

84.06 

(1.86) 

64.09 

(2.45) 

52.85 

(1.79) 

77.45 

(2.05) 

78.38 

(1.64) 

85.54 

(1.68) 

66.65 

(1.64) 

56.26 

(1.75) 

79.13 

(1.61) 

78.74 

(1.59) 

84.81 

(1.85) 

66.46 

(2.09) 

55.75 

(1.88) 

79.51 

(1.73) 

79.34 

(1.51) 

FGANv 
85.17 

(1.99) 

66.16 

(1.58) 

56.81 

(1.77) 

79.31 

(1.48) 

80.01 

(1.31) 

84.96 

(1.65) 

66.21 

(1.74) 

56.74 

(1.76) 

78.81 

(1.73) 

79.46 

(1.89) 

86.26 

(1.71) 

67.38 

(2.06) 

58.78 

(1.61) 

79.98 

(1.73) 

79.74 

(1.64) 

85.89 

(1.63) 

67.81 

(1.82) 

58.92 

(1.61) 

80.83 

(1.84) 

81.27 

(1.64) 

CML 
84.88 

(2.13) 

64.28 

(1.84) 

53.64 

(1.75) 

78.45 

(2.05) 

79.53 

(1.87) 

83.19 

(1.61) 

64.74 

(2.23) 

52.83 

(1.82) 

78.27 

(1.72) 

78.85 

(1.63) 

85.49 

(1.88) 

65.88 

(1.97) 

53.41 

(1.89) 

80.03 

(2.31) 

79.53 

(1.42) 

85.61 

(1.73) 

66.52 

(1.96) 

54.09 

(1.82) 

80.09 

(2.06) 

80.39 

(1.94) 

LMF 
83.65 

(2.79) 

62.26 

(2.63) 

52.24 

(1.86) 

77.72 

(1.99) 

77.31 

(2.01) 

82.28 

(2.36) 

61.68 

(2.71) 

52.37 

(2.32) 

76.15 

(2.33) 

78.04 

(2.19) 

84.34 

(2.08) 

63.04 

(2.45) 

53.06 

(1.84) 

78.02 

(1.92) 

77.69 

(2.06) 

84.37 

(1.99) 

63.88 

(2.28) 

53.23 

(2.13) 

78.73 

(2.10) 

78.95 

(2.01) 

GMU 
84.28 

(1.67) 

65.79 

(1.87) 

56.81 

(1.57) 

78.44 

(1.63) 

79.13 

(1.56) 

84.93 

(1.72) 

66.18 

(2.22) 

56.85 

(1.86) 

78.79 

(1.67) 

78.44 

(1.72) 

86.74 

(1.78) 

66.82 

(1.75) 

58.50 

(1.63) 

78.59 

(1.84) 

79.36 

(1.44) 

85.28 

(1.76) 

67.06 

(1.89) 

57.62 

(1.71) 

80.72 

(1.93) 

80.59 

(1.71) 

ARDLv 
85.93 

(1.68) 

67.19 

(1.54) 

57.92 

(1.69) 

80.16 

(1.33) 

81.19 

(1.49) 

86.32 

(1.67) 

67.41 

(1.89) 

58.94 

(1.78) 

79.78 

(1.32) 

80.03 

(1.63) 

87.28 

(1.67) 

69.58 

(1.53) 

60.83 

(1.61) 

81.11 

(1.59) 

82.87 

(1.35) 

86.77 

(1.38) 

68.08 

(1.79) 

60.07 

(1.59) 

81.49 

(1.28) 

82.95 

(1.37) 

Note: The results of representation performance of each method using all data views; The best performance is in boldface. 


