Conference Paper/Proceeding/Abstract 226 views
Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression
Telehealth and Assistive Technology / 847: Intelligent Systems and Robotics
Swansea University Author: Sara Sharifzadeh
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.2316/p.2016.847-002
Abstract
Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression
Published in: | Telehealth and Assistive Technology / 847: Intelligent Systems and Robotics |
---|---|
ISBN: | 978-0-88986-986-8 |
Published: |
Calgary,AB,Canada
ACTAPRESS
2016
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa65608 |
first_indexed |
2024-03-23T15:05:59Z |
---|---|
last_indexed |
2024-11-25T14:16:27Z |
id |
cronfa65608 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-03-23T15:06:02.8747977</datestamp><bib-version>v2</bib-version><id>65608</id><entry>2024-02-09</entry><title>Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression</title><swanseaauthors><author><sid>a4e15f304398ecee3f28c7faec69c1b0</sid><ORCID>0000-0003-4621-2917</ORCID><firstname>Sara</firstname><surname>Sharifzadeh</surname><name>Sara Sharifzadeh</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2024-02-09</date><deptcode>MACS</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>Telehealth and Assistive Technology / 847: Intelligent Systems and Robotics</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>ACTAPRESS</publisher><placeOfPublication>Calgary,AB,Canada</placeOfPublication><isbnPrint>978-0-88986-986-8</isbnPrint><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>1</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-01-01</publishedDate><doi>10.2316/p.2016.847-002</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2024-03-23T15:06:02.8747977</lastEdited><Created>2024-02-09T01:16:57.1894755</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ali</firstname><surname>Al-Yacoub</surname><order>1</order></author><author><firstname>Sara</firstname><surname>Sharifzadeh</surname><orcid>0000-0003-4621-2917</orcid><order>2</order></author><author><firstname>Niels</firstname><surname>Lohse</surname><order>3</order></author><author><firstname>Zahid</firstname><surname>Usman</surname><order>4</order></author><author><firstname>Yee</firstname><surname>Goh</surname><order>5</order></author><author><firstname>Michael</firstname><surname>Jackson</surname><order>6</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2024-03-23T15:06:02.8747977 v2 65608 2024-02-09 Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression a4e15f304398ecee3f28c7faec69c1b0 0000-0003-4621-2917 Sara Sharifzadeh Sara Sharifzadeh true false 2024-02-09 MACS Conference Paper/Proceeding/Abstract Telehealth and Assistive Technology / 847: Intelligent Systems and Robotics ACTAPRESS Calgary,AB,Canada 978-0-88986-986-8 1 1 2016 2016-01-01 10.2316/p.2016.847-002 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2024-03-23T15:06:02.8747977 2024-02-09T01:16:57.1894755 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ali Al-Yacoub 1 Sara Sharifzadeh 0000-0003-4621-2917 2 Niels Lohse 3 Zahid Usman 4 Yee Goh 5 Michael Jackson 6 |
title |
Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression |
spellingShingle |
Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression Sara Sharifzadeh |
title_short |
Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression |
title_full |
Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression |
title_fullStr |
Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression |
title_full_unstemmed |
Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression |
title_sort |
Learning Industrial Robot Force/torque Compensation: A Comparison of Support Vector and Random Forests Regression |
author_id_str_mv |
a4e15f304398ecee3f28c7faec69c1b0 |
author_id_fullname_str_mv |
a4e15f304398ecee3f28c7faec69c1b0_***_Sara Sharifzadeh |
author |
Sara Sharifzadeh |
author2 |
Ali Al-Yacoub Sara Sharifzadeh Niels Lohse Zahid Usman Yee Goh Michael Jackson |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Telehealth and Assistive Technology / 847: Intelligent Systems and Robotics |
publishDate |
2016 |
institution |
Swansea University |
isbn |
978-0-88986-986-8 |
doi_str_mv |
10.2316/p.2016.847-002 |
publisher |
ACTAPRESS |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
0 |
active_str |
0 |
published_date |
2016-01-01T08:28:05Z |
_version_ |
1821393378720350208 |
score |
11.070971 |