Journal article 1864 views 224 downloads
Returns to solar panels in the housing market: A meta learner approach
Energy Economics, Volume: 137, Start page: 107768
Swansea University Authors:
Ilias Asproudis , Cigdem Gedikli
, Okan Yilmaz
-
PDF | Version of Record
© 2024 The Author(s). This is an open access article under the CC BY license.
Download (502.12KB)
DOI (Published version): 10.1016/j.eneco.2024.107768
Abstract
This paper aims to estimate the returns to solar panels in the UK residential housing market. Our analysis applies a causal machine learning approach to Zoopla property data containing about 5 million observations. Drawing on meta-learner algorithms, we provide strong evidence documenting that solar...
| Published in: | Energy Economics |
|---|---|
| ISSN: | 0140-9883 |
| Published: |
Elsevier BV
2024
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa64339 |
| first_indexed |
2023-09-03T17:11:28Z |
|---|---|
| last_indexed |
2024-11-25T14:13:52Z |
| id |
cronfa64339 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-08-01T15:35:23.0208009</datestamp><bib-version>v2</bib-version><id>64339</id><entry>2023-09-03</entry><title>Returns to solar panels in the housing market: A meta learner approach</title><swanseaauthors><author><sid>da7667a22ea7ad12af360650b733406f</sid><ORCID>0000-0002-8332-1832</ORCID><firstname>Ilias</firstname><surname>Asproudis</surname><name>Ilias Asproudis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c83614936b5df640b1409eda0676aa44</sid><ORCID>0000-0002-0055-6397</ORCID><firstname>Cigdem</firstname><surname>Gedikli</surname><name>Cigdem Gedikli</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bb42de9bf10d32bda4695327b3aa0470</sid><ORCID>0000-0002-0553-8518</ORCID><firstname>Okan</firstname><surname>Yilmaz</surname><name>Okan Yilmaz</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-09-03</date><deptcode>SOSS</deptcode><abstract>This paper aims to estimate the returns to solar panels in the UK residential housing market. Our analysis applies a causal machine learning approach to Zoopla property data containing about 5 million observations. Drawing on meta-learner algorithms, we provide strong evidence documenting that solar panels are directly capitalized into sale prices. Our results point to a selling price premium above 6% (range between 6.1% to 7.1% depending on the meta-learner) associated with solar panels. Considering that the average selling price is £230,536 in our sample, this corresponds to an additional £14,062 to £16,368 selling price premium for houses with solar panels. Our results are robust to traditional hedonic pricing models and matching techniques, with the lowest estimates at 3.5% using the latter. Despite the declining trend, the additional analyses demonstrate that the positive premium associated with solar panels persists over the years.</abstract><type>Journal Article</type><journal>Energy Economics</journal><volume>137</volume><journalNumber/><paginationStart>107768</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0140-9883</issnPrint><issnElectronic/><keywords>Solar panels; Residential housing market; Sale prices; Machine-learning; Meta-learners</keywords><publishedDay>1</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2024</publishedYear><publishedDate>2024-09-01</publishedDate><doi>10.1016/j.eneco.2024.107768</doi><url/><notes/><college>COLLEGE NANME</college><department>Social Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SOSS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Swansea University</funders><projectreference/><lastEdited>2024-08-01T15:35:23.0208009</lastEdited><Created>2023-09-03T18:03:43.6622633</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Social Sciences - Economics</level></path><authors><author><firstname>Ilias</firstname><surname>Asproudis</surname><orcid>0000-0002-8332-1832</orcid><order>1</order></author><author><firstname>Cigdem</firstname><surname>Gedikli</surname><orcid>0000-0002-0055-6397</orcid><order>2</order></author><author><firstname>Oleksandr</firstname><surname>Talavera</surname><order>3</order></author><author><firstname>Okan</firstname><surname>Yilmaz</surname><orcid>0000-0002-0553-8518</orcid><order>4</order></author></authors><documents><document><filename>64339__31030__f8885b3afea246c38e31b1cb3c753a40.pdf</filename><originalFilename>64339.VoR.pdf</originalFilename><uploaded>2024-08-01T15:32:28.3130120</uploaded><type>Output</type><contentLength>514169</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2024 The Author(s). This is an open access article under the CC BY license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2024-08-01T15:35:23.0208009 v2 64339 2023-09-03 Returns to solar panels in the housing market: A meta learner approach da7667a22ea7ad12af360650b733406f 0000-0002-8332-1832 Ilias Asproudis Ilias Asproudis true false c83614936b5df640b1409eda0676aa44 0000-0002-0055-6397 Cigdem Gedikli Cigdem Gedikli true false bb42de9bf10d32bda4695327b3aa0470 0000-0002-0553-8518 Okan Yilmaz Okan Yilmaz true false 2023-09-03 SOSS This paper aims to estimate the returns to solar panels in the UK residential housing market. Our analysis applies a causal machine learning approach to Zoopla property data containing about 5 million observations. Drawing on meta-learner algorithms, we provide strong evidence documenting that solar panels are directly capitalized into sale prices. Our results point to a selling price premium above 6% (range between 6.1% to 7.1% depending on the meta-learner) associated with solar panels. Considering that the average selling price is £230,536 in our sample, this corresponds to an additional £14,062 to £16,368 selling price premium for houses with solar panels. Our results are robust to traditional hedonic pricing models and matching techniques, with the lowest estimates at 3.5% using the latter. Despite the declining trend, the additional analyses demonstrate that the positive premium associated with solar panels persists over the years. Journal Article Energy Economics 137 107768 Elsevier BV 0140-9883 Solar panels; Residential housing market; Sale prices; Machine-learning; Meta-learners 1 9 2024 2024-09-01 10.1016/j.eneco.2024.107768 COLLEGE NANME Social Sciences School COLLEGE CODE SOSS Swansea University SU Library paid the OA fee (TA Institutional Deal) Swansea University 2024-08-01T15:35:23.0208009 2023-09-03T18:03:43.6622633 Faculty of Humanities and Social Sciences School of Social Sciences - Economics Ilias Asproudis 0000-0002-8332-1832 1 Cigdem Gedikli 0000-0002-0055-6397 2 Oleksandr Talavera 3 Okan Yilmaz 0000-0002-0553-8518 4 64339__31030__f8885b3afea246c38e31b1cb3c753a40.pdf 64339.VoR.pdf 2024-08-01T15:32:28.3130120 Output 514169 application/pdf Version of Record true © 2024 The Author(s). This is an open access article under the CC BY license. true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
Returns to solar panels in the housing market: A meta learner approach |
| spellingShingle |
Returns to solar panels in the housing market: A meta learner approach Ilias Asproudis Cigdem Gedikli Okan Yilmaz |
| title_short |
Returns to solar panels in the housing market: A meta learner approach |
| title_full |
Returns to solar panels in the housing market: A meta learner approach |
| title_fullStr |
Returns to solar panels in the housing market: A meta learner approach |
| title_full_unstemmed |
Returns to solar panels in the housing market: A meta learner approach |
| title_sort |
Returns to solar panels in the housing market: A meta learner approach |
| author_id_str_mv |
da7667a22ea7ad12af360650b733406f c83614936b5df640b1409eda0676aa44 bb42de9bf10d32bda4695327b3aa0470 |
| author_id_fullname_str_mv |
da7667a22ea7ad12af360650b733406f_***_Ilias Asproudis c83614936b5df640b1409eda0676aa44_***_Cigdem Gedikli bb42de9bf10d32bda4695327b3aa0470_***_Okan Yilmaz |
| author |
Ilias Asproudis Cigdem Gedikli Okan Yilmaz |
| author2 |
Ilias Asproudis Cigdem Gedikli Oleksandr Talavera Okan Yilmaz |
| format |
Journal article |
| container_title |
Energy Economics |
| container_volume |
137 |
| container_start_page |
107768 |
| publishDate |
2024 |
| institution |
Swansea University |
| issn |
0140-9883 |
| doi_str_mv |
10.1016/j.eneco.2024.107768 |
| publisher |
Elsevier BV |
| college_str |
Faculty of Humanities and Social Sciences |
| hierarchytype |
|
| hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
| hierarchy_top_title |
Faculty of Humanities and Social Sciences |
| hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
| hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
| department_str |
School of Social Sciences - Economics{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Social Sciences - Economics |
| document_store_str |
1 |
| active_str |
0 |
| description |
This paper aims to estimate the returns to solar panels in the UK residential housing market. Our analysis applies a causal machine learning approach to Zoopla property data containing about 5 million observations. Drawing on meta-learner algorithms, we provide strong evidence documenting that solar panels are directly capitalized into sale prices. Our results point to a selling price premium above 6% (range between 6.1% to 7.1% depending on the meta-learner) associated with solar panels. Considering that the average selling price is £230,536 in our sample, this corresponds to an additional £14,062 to £16,368 selling price premium for houses with solar panels. Our results are robust to traditional hedonic pricing models and matching techniques, with the lowest estimates at 3.5% using the latter. Despite the declining trend, the additional analyses demonstrate that the positive premium associated with solar panels persists over the years. |
| published_date |
2024-09-01T11:26:25Z |
| _version_ |
1850848612600250368 |
| score |
11.08895 |

