Journal article 510 views 55 downloads
Correspondences and stable homotopy theory
Transactions of the London Mathematical Society, Volume: 10, Issue: 1, Pages: 124 - 155
Swansea University Author: Grigory Garkusha
-
PDF | Version of Record
© 2023 The Authors. Transactions of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Download (425.18KB)
DOI (Published version): 10.1112/tlm3.12056
Abstract
A general method of producing correspondences andspectral categories out of symmetric ring objects in general categories is given. As an application, stable homotopy theory of spectra is recovered from modulesover a commutative symmetric ring spectrum defined interms of framed correspondences over a...
Published in: | Transactions of the London Mathematical Society |
---|---|
ISSN: | 2052-4986 2052-4986 |
Published: |
Wiley
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa64111 |
first_indexed |
2023-09-29T11:47:29Z |
---|---|
last_indexed |
2024-11-25T14:13:28Z |
id |
cronfa64111 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-10-02T12:21:05.4654666</datestamp><bib-version>v2</bib-version><id>64111</id><entry>2023-08-23</entry><title>Correspondences and stable homotopy theory</title><swanseaauthors><author><sid>7d3826fb9a28467bec426b8ffa3a60e0</sid><ORCID>0000-0001-9836-0714</ORCID><firstname>Grigory</firstname><surname>Garkusha</surname><name>Grigory Garkusha</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-08-23</date><deptcode>MACS</deptcode><abstract>A general method of producing correspondences andspectral categories out of symmetric ring objects in general categories is given. As an application, stable homotopy theory of spectra is recovered from modulesover a commutative symmetric ring spectrum defined interms of framed correspondences over an algebraically closed field. Another application recovers stable motivic homotopy theory () from spectral modules over associated spectral categories.</abstract><type>Journal Article</type><journal>Transactions of the London Mathematical Society</journal><volume>10</volume><journalNumber>1</journalNumber><paginationStart>124</paginationStart><paginationEnd>155</paginationEnd><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2052-4986</issnPrint><issnElectronic>2052-4986</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-12-01</publishedDate><doi>10.1112/tlm3.12056</doi><url>http://dx.doi.org/10.1112/tlm3.12056</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU College/Department paid the OA fee</apcterm><funders>EPSRC, EP/W012030/1</funders><projectreference/><lastEdited>2023-10-02T12:21:05.4654666</lastEdited><Created>2023-08-23T11:50:59.1690552</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Grigory</firstname><surname>Garkusha</surname><orcid>0000-0001-9836-0714</orcid><order>1</order></author></authors><documents><document><filename>64111__28675__46139cb85d1c4457936566afe205d804.pdf</filename><originalFilename>64111.VOR.pdf</originalFilename><uploaded>2023-10-02T12:19:00.7552208</uploaded><type>Output</type><contentLength>435387</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2023 The Authors. Transactions of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-10-02T12:21:05.4654666 v2 64111 2023-08-23 Correspondences and stable homotopy theory 7d3826fb9a28467bec426b8ffa3a60e0 0000-0001-9836-0714 Grigory Garkusha Grigory Garkusha true false 2023-08-23 MACS A general method of producing correspondences andspectral categories out of symmetric ring objects in general categories is given. As an application, stable homotopy theory of spectra is recovered from modulesover a commutative symmetric ring spectrum defined interms of framed correspondences over an algebraically closed field. Another application recovers stable motivic homotopy theory () from spectral modules over associated spectral categories. Journal Article Transactions of the London Mathematical Society 10 1 124 155 Wiley 2052-4986 2052-4986 1 12 2023 2023-12-01 10.1112/tlm3.12056 http://dx.doi.org/10.1112/tlm3.12056 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU College/Department paid the OA fee EPSRC, EP/W012030/1 2023-10-02T12:21:05.4654666 2023-08-23T11:50:59.1690552 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Grigory Garkusha 0000-0001-9836-0714 1 64111__28675__46139cb85d1c4457936566afe205d804.pdf 64111.VOR.pdf 2023-10-02T12:19:00.7552208 Output 435387 application/pdf Version of Record true © 2023 The Authors. Transactions of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. true eng https://creativecommons.org/licenses/by/4.0/ |
title |
Correspondences and stable homotopy theory |
spellingShingle |
Correspondences and stable homotopy theory Grigory Garkusha |
title_short |
Correspondences and stable homotopy theory |
title_full |
Correspondences and stable homotopy theory |
title_fullStr |
Correspondences and stable homotopy theory |
title_full_unstemmed |
Correspondences and stable homotopy theory |
title_sort |
Correspondences and stable homotopy theory |
author_id_str_mv |
7d3826fb9a28467bec426b8ffa3a60e0 |
author_id_fullname_str_mv |
7d3826fb9a28467bec426b8ffa3a60e0_***_Grigory Garkusha |
author |
Grigory Garkusha |
author2 |
Grigory Garkusha |
format |
Journal article |
container_title |
Transactions of the London Mathematical Society |
container_volume |
10 |
container_issue |
1 |
container_start_page |
124 |
publishDate |
2023 |
institution |
Swansea University |
issn |
2052-4986 2052-4986 |
doi_str_mv |
10.1112/tlm3.12056 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://dx.doi.org/10.1112/tlm3.12056 |
document_store_str |
1 |
active_str |
0 |
description |
A general method of producing correspondences andspectral categories out of symmetric ring objects in general categories is given. As an application, stable homotopy theory of spectra is recovered from modulesover a commutative symmetric ring spectrum defined interms of framed correspondences over an algebraically closed field. Another application recovers stable motivic homotopy theory () from spectral modules over associated spectral categories. |
published_date |
2023-12-01T08:23:36Z |
_version_ |
1821393096433205248 |
score |
11.047501 |