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1 | INTRODUCTION

Algebraic Kasparov K-theory is stable homotopy theory of nonunital k-algebras Alg, [9, 10].
In detail, we start with the category U,(Alg,) of pointed simplicial functors from Alg, to
pointed simplicial sets, where each algebra A € Alg, is regarded as the representable object
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rA = HomAlgk(A, —). The category U, (Alg,) comes equipped with a motivic model structure.
Let S? be the standard simplicial circle. Stabilization of U,(Alg,) in the S!-direction leads to
a stable motivic model category Spgi(Alg,) of S'-spectra in U, (Alg,). The S!-suspension spec-
trum Zgj’rA of an algebra A is computed as the fibrant spectrum K(A, —) [10], where K(A, B)
is the algebraic Kasparov KK-theory spectrum of A,B € Alg, defined in [9]. A key nonunital
homomorphism involved in the computationis o, : JA — QA, where JA = Ker(TA — A) with
TA=A® A®? @ - the algebraic tensor algebra and QA = (x> — x)A[x]. The morphism r(c )
is a motivic equivalence in U, (Alg; ).

In stable motivic homotopy theory the suspension P!-spectrum Z;ﬁ X, of a smooth algebraic
variety X € Sm/k is computed in [19, Theorem 4.1] as a (positively) fibrant spectrum Mpai (X);-
Locally in the Nisnevich topology it is equal to the Pl-spectrum (Fr(Al'{ X —,X), Fr(Al'{ X —, XX
T),..),where T = Al /(A! —{0}) and Fr(—, X) is the sheaf of stable framed correspondences intro-
duced by Voevodsky [35] in 2001. A key morphism involved in the computation is the canonical
motivic equivalence oy : X, AP — X, AT in the category of pointed motivic spaces M. Here
P/l is the pointed projective line (P?, o).

The computations of Z;ﬁ rA and Zﬂ")ﬁX . share lots of common properties [11]. Inspired by these
computations, two categorical constructions are introduced in this paper. The first one produces
correspondences associated with two objects P, T € C and ring objects of the category of symmet-
ric sequences C*, where C is a symmetric monoidal category with finite colimits and zero object
0. The correspondences are constructed between objects of an arbitrary full subcategory 3 of C
closed under monoidal product. See Theorem 2.4 for details. After Voevodsky, correspondences
play a prominent role in motivic homotopy theory. In particular, they are necessary for com-
puting motivic homotopy types as well as for producing triangulated categories of motives. For
example, Voevodsky’s fundamental graded category of framed correspondences Fr, (k) is recov-
ered from Theorem 2.4 if we take C = M, B={X_, | X € Sm/k},P = (P!, ), T = Al /(A! —{0}),
and the commutative ring object (S°, T, T?,...) in MZ*. Next, if ¢ : P — T is a morphism in C
then the second categorical construction produces spectral categories, that is, categories enriched
over symmetric S'-spectra Spgl, which are used for applications mentioned below. See The-
orem 5.2 for details. Spectral categories are of great utility in classical and equivariant stable
homotopy theory (see, e.g., [21, 33]) as well as in constructing triangulated categories of K-motives
[16, 17].

The spectral categories and symmetric spectra constructed in this paper lead to the following
applications. We first introduce the stable homotopy category SH; over an arbitrary field k in
Section 4. It is defined as the homotopy category of S, -modules, where S, is a commutative sym-
metric ring spectrum defined over k. Then one reconstructs in Theorem 4.15 the stable homotopy
theory of S-spectra SH as SH, if k is algebraically closed (we need to invert the exponential char-
acteristic). Moreover, this reconstruction is given by a functor taking a symmetric S*-spectrum
N to its symmetric framed motive M Zr(N ) introduced in this paper (see Definition 4.9). Another
application gives yet another genuinely local model of stable motivic homotopy theory SH (k)
(in addition to [20]) and, more generally, a local model for the category of E-modules in SH(k),
where E is a symmetric Thom ring spectrum. See Theorem 6.7 and Corollary 6.9 for details. For
the latter result, we apply Theorem 5.2 to produce a spectral category Oﬁ using data as above:
C=M,B={X,|X €Sm/k},P = (P!, ), T = Al /(A! — {0}). We also use the enriched motivic
homotopy theory of motivic spectral categories developed in [16, 17]. The reader will also find
reconstruction theorems for E-modules of SH(k) in terms of co-categories of “tangentially framed
correspondences” in [7, 8]. The approach presented in Section 6 is combinatorial in the sense
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that it is based on explicit spectral categories produced by Theorem 5.2 and modules over them
defined in terms of original Voevodsky’s framed correspondences [35]. This approach also pro-
duces triangulated categories of E-framed motives out of spectral categories of Theorem 5.2. They
are constructed in a similar fashion as the classical Voevodsky category of motives or the category
of K-motives in the sense of [16, 17].

The author also expects further applications of (spectral) categories of correspondences, con-
structed in this paper for quite general categories, in classical and algebraic Kasparov K-theory as
well as in noncommutative algebraic geometry. This will be the material of subsequent papers.
In this paper he has concentrated on applications in classical and motivic stable homotopy
theory.

The author thanks the anonymous referee for helpful comments.

Notation. Throughout the paper, we employ the following notation.

k and pt A field of exponential characteristic e and Spec(k)

Sm/k The category of smooth separated schemes of finite type

Fr,(k) or Sm/k, The category of framed correspondences of level zero

Shv,(Sm/k) The closed symmetric monoidal category of pointed Nisnevich sheaves

M = A°’Shv, (Sm/k) The category of pointed motivic spaces, also known as the category of pointed

simplicial Nisnevich sheaves

S. The category of pointed simplicial sets

2 | GRADED SYMMETRIC SEQUENCES

Let (C, A, V, S) be a symmetric monoidal category with finite coproducts, unit object S and zero
object 0. We assume that a canonical morphism

v:\/(AAB) = (\/A)AB

iel iel

is an isomorphism for any finite set I and A;, C € C'.In particular,if] = fthenOAB =~ B A0 0.
In what follows, we shall also assume that C has finite colimits. By [22, section 7], the category
of symmetric sequences C* is symmetric monoidal with

XAY), =\ = Xz x5, Xp A Y-
p+q=n

The symmetric sequence (S, 0,0, ...) is a monoidal unit of C*. This notation needs some explana-
tion (we follow [22, section 7]). Given a finite set I and an object A € C, T X A is the coproduct of
|T'| copies of A. If I is a group, then I' X A has an obvious left I'-action; I" X A is the free I'-object
on A. Note that a I'-action on A is then equivalent to a map I' X A — A satisfying the usual unit
and associativity conditions. Also, if " admits a right action by a group I, and A is a left ["-object,
then we can form I’ Xv A as the colimit of the ["-action on T X A, where a € I” takes the copy of
A corresponding to 8 € T to the copy of A corresponding to fa~! by the action of a.

Such a category C is also known as a distributive symmetric monoidal category.
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Given twomaps f : X - X’ and g : Y — Y’ in CZ, the I, X I -equivariant maps f, A g,
X, ANYy > X;) A Y(’l yield the tensor product morphism f A g : X AY = X' AY' in C*.

The twist isomorphism twist : X AY — Y AX for X,Y € C* is the natural map taking the
summand (oc,Xp A Yq) to the summand (axg 5, Y, /\Xp) fora € £, ,, where y, , € X, isthe
(g, p)-shuffle givenby yx, ,(i) =i+ pfor1 <i<gandx, ,(i) =i —qforq <i < p+gq.Itisworth
noting that the map defined without the shuffle permutation is not a map of symmetric sequences.

Definition 2.1 (Ring objects). In what follows we shall refer to monoid objects in C* as ring objects.
There is a standard description of a ring object E in C* that we need later:

o asequence of objects E,, € C forn > 0;
o aleft action of the symmetric group X, on E,, for each n > 0;
o Z, X X,,-equivariant multiplication maps

run,m : En /\Em - En+m
forn,m > 0, and
o aunitmapt, . S — E,.

These data are subject to the following conditions:
(Associativity) The square

id A, p
E,AE, AE, —>E, AEp,,

/.ln,m/\idl/ iﬂn.mﬂ)

Epim A Ep Hrtmp En+m+p

commutes for all n,m, p > 0.
(Unit) The two composites

E, A Hn0o
E,2E,ANS—— E,NEy—> E,

gAE, HMo,n
E,=2SAE,—— EyAE, — E,

are the identity for all n > 0.

A morphism f : E — E’ of ring objects consists of ,,-equivariant maps f,, : E, = E; forn >
0, which are compatible with the multiplication and unit maps in the sense that f, ., o, , =
Mpm© (fn A fry) foralln,m > 0,and fq oty = 1.

A ring object E is commutative if the square

id Aftm,p
EyAEn AEy — % Ep AEpy)

,u”_m/\idl iﬂn,nﬂp

commutes for all n, m > 0.
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128 | GARKUSHA

Definition 2.2 (Modules). A right module M over a ring object E € CT is defined in a standard
way. There is an equivalent definition that we need later:

o asequence of objects M,, € C forn > 0,
o aleft action of the symmetric group X, on M,, for each n > 0, and
¢ X, X X, -equivariant action maps a,, ,,, : M, AE,, > M, ., forn,m > 0.

The action maps have to be associative and unital in the sense that the following diagrams
commute

Mn/\:"lm,p M, At
M, ANE,NE, —— M, ANEp, M,=2M,ANS—— M, ANE,
an,mAEp\L J{an,m-ﬁ-p M lan,()
Mpim NEp ———> Myimyp M,

n+m,p

for all n,m,p > 0. A morphism f : M — N of right E-modules consists of X,-equivariant
maps f, : M,, > N, for n > 0, which are compatible with the action maps in the sense that
SFram ©%ym = Ay o (fy AEy,) for all n,m > 0. We denote the category of right E-modules by
ModE.

The following definition is motivated by the fundamental graded category of Voevodsky’s
framed correspondences, in which the role of C is played by the category of pointed motivic spaces
M, Bis given by pointed motivic spaces of the form X, with X € Sm/k, P is the pointed projective
line (P!, 0), and E = (pt,,T,T?,..) with T = Al/(A! —{0}).

In what follows, we shall tacitly use iterated monoidal products and coherence.

Definition 2.3. Suppose 3 is a full subcategory of C closed under A and P € Ob C. Let E be a ring
object of C*. We define the set of (E, P)-correspondences of level n between two objects X,Y € B

by
Corrf(X,Y) := Hom(X APM,Y AE,).
This set is pointed at the zeroth map. By definition, Corrg (X,Y) :=Hom (X,Y A E).
Define a pairing
Pxyz © CortE(X,Y) A Cortf (Y, Z) — Cortt, | (X,2)

by the rule: vy ,(f : X AP - Y AE,,g : Y AP"" — Z AE,,) is given by the composition

APAM t AE, t
X/\P/\"/\P””f—>Y/\En/\P”"—w>Y/\PA’"/\Eng—>Z/\Em/\En—w>
Z Nnm
—>ZANE,ANE,, —— ZAE,,,.

Theorem 2.4. Let E be a ring object in C* and B is a full subcategory of C closed under monoidal
product. Then B can be enriched over the closed symmetric monoidal category of symmetric sequences
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of pointed sets Setsf. Namely, Setsf,—objects of morphisms are defined by
(Corrf (X,Y), Cortf (X, Y), Cortb (X, Y),..), X,Y €B. @

Compositions are defined by pairings ¢x y ;. The resulting Setsf-category is denoted by Corrf (B).
Moreover, if E is a commutative ring object then Corrf (B) is symmetric monoidal. The monoidal
product of X, Y € Ob(Corrf (B)) is defined as X A'Y, where A is the monoidal product in B.

Proof. The left action of the symmetric group Z,, on Corrﬁ (X,Y) =Hom (X A P",Y AE,) for
each n > 0 is given by conjugation. In detail, for each f : X APM — Y AE, and each 7 € X, the
morphism 7 - f is defined as the composition

XAr~L YA
xapn X xapn Ly g, X5 vy AR, ©)

With this definition each CorrZ(X,Y) becomes a pointed Z,-set. Here £, acts on P\ by
permutations, using the commutativity and associativity isomorphisms.
As the multiplication maps u, , for E are %, X ¥, -equivariant and the diagram

Z Nipm
X A PN A PN ZANE,ANE, —>= ZAE 1,
idy AaAﬁT idy /\a/\ﬁT Tidy ANaxp)
AP 8AE, Z Ny

X APM A PN > Y AE, AP — > Y AP AE, ——> Z AEy AEy, ——> Z AEy AEy ———> Z AEpom
is commutative for any o € %, 8 € Z,,,, it follows that the pairing ¢y y , is 2, X Z,, -equivariant.
If there is no likelihood of confusion, we shall simetimes write (X A P\, Y A E,,) to denote

Hom (X A P, Y A E,)). The “associativity square”

id Aty
X AP YANE)ANY AP, Z ANE,) AN(Z AP, W AEp) —" X APMYANE)A(Y APYP. W AE,,.p)

#mmdi i#nmw
Mntm,p

X AP ZNEpim) N(Z APYP,W AE)) X APNHTPL W A Epimap)

is commutative for all n,m, p > 0 due to the associativity of the multiplication maps u, , for E,
and so gy y 7 is an associative pairing.
The identity morphism is defined by

o1 idy At
Uy 1 X = XAS— 5 XAE, € Corr} (X, X),

where (, : S - E, is the unit map. We see that B is enriched over Sets* by means of
(E, P)-correspondences.

Suppose E is a commutative ring object in CZ. If there is no likelihood of confusion, we shall
simetimes write [X, Y] to denote the Sets>-object of morphisms (1). To show that Corrf (B)isa
symmetric monoidal Sets>-category, we need to define a Sets>-functor

¥ : CortE(B) A Cortf (B) — Corr(B),
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130 | GARKUSHA

where  Ob(Corrf(B) A Corrf(B)) = Ob Corrf(B) x Ob Corr?(B)  and  [(X,Y), (X', Y")] =
[X,X'] ALY, Y] (see [1, p. 305]). By definition, (X,Y) = X AY for all (X,Y) € Ob(CorrZ () A
Corrf(B)).
Composition law in Corrf B)A Corrf (B) is given by (see [1, p. 305] for details)
[(X, ), X, YOI A XY, X", Y] = [(XXDIALY, YA XL XD ALY, Y] SN

Px x! x" NPy y! y

(X XA LKL X DALY, Y IALY, Y] [(XXDIALY, Y] = [(X, V), (X", Y")].

It sends each quadruple
(f : XAPY 5 X"ANE,, g : YAP - Y' AE,)
A X' APY 5 X" ANE, g 1Y APMN - Y AE)

to
(f 1 XAPY = X" ANEp, (X5 f' + X' AP = X" AEy),

g:YAPM Y AE, g 1 Y APY - Y' AE)
and then to the couple
RHsgp fof - X AP 5 X" ANE,,,g0g : Y A PN Y AEg),

where ¥, € 4,44 is the permutation id Xy, , Xid € 2, X Zg, o X Z;.
Define

XY . ! ! ! !
ey Corrﬁ(X,X )A CorrqE(Y, Y) - Corr§+q(x AY, X' AY")

by sending (f : X AP"? - X' AE,,g : Y AP — Y' AE,) to the composition

tw fA tw
X/\Y/\PAPAP’\q—>X/\P’\p/\Y/\PAq—g>X’/\Ep/\Y’/\Eq—>X'/\Y’AEP/\Eq

YAY Aty g
> / 4
X' ANY ANE,
The pairing XY s plainly £ X ¥ _-equivariant
X'y’ Y Sp g :
‘We have a commutative diagram

id AtwistAid HMp,qN\Hs,g

Ep /\Es/\Eq AE; 4>Ep /\Eq ANE;ANE, 4>Ep+q ANEg,,
id Apt g Aid id Apg sAId l Hptqs+t
id Ay Aid
Ep /\Es+q NE; —>Ep /\Eq+s A E; Ep+q+s+t
Hp,s+q Aid :up,q+x/\id
id Ay Aid
Episiq NE; Epig+s NE;
HMp+s+q, Hptqest
Epistqre i Azoghid Epiqistt
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Commutativity of the top square follows from commutativity of the multiplication maps, commu-
tativity of the remaining squares follows from equivariancy of the multiplication maps. It follows
that

Pxay x Ay x v (f A 9.f Ang)= ox x x(f A ey.y yr (9, 9.
For X,Y € B, the corresponding unit map of Corrf (B) A Corrf (B) is given by (see [1, p. 305])

1 Uy Ay

S sas 2 X X ALY, Y]

Clearly, i;’ takes it to the unit uy,y : S = [X AY,X AY].

We see that 3 : Corrf(B) A Corrf (B) — Corrf(B) is a Sets>-functor. It defines a symmetric
monoidal Sets*z-category structure on Corrf(B) with the unit S € Ob Corrf(B). Setsf-natural
associativity, symmetry isomorphisms and two Sets>-natural unit isomorphisms are inherited
from the same isomorphisms of the symmetric monoidal category structure on /3. This completes
the proof of the theorem. O

The proof of the theorem implies the following result.

Corollary 2.5. Under the notation of Theorem 2.4 any morphism of two ring objectsy : E — E' in
C® induces a morphism of Sets>-categories y, : Corr?(B) — Corr? (B).

Day’s theorem [2] together with Theorem 2.4 also imply the following result.

Corollary 2.6. Under the notation of Theorem 2.4 if E is a commutative ring object in C* then the
category of Corrf (B)-modules is a closed symmetric monoidal category.

3 | SYMMETRIC SPECTRA

Let C be the category from the previous section and let T be an object of C. Following [22, section 7]
consider the free commutative monoid Sym(T) on the object (0,T,0,0,...) of CZ . Then Sym(T)
is the symmetric sequence (S, T, T"?,T"3,...), where X, acts on T"" by permutation, using the
commutativity and associativity isomorphisms.

Definition 3.1.

(1) Following [22, Definition 7.2], the category of symmetric spectra Sp*(C, T) is the category of
modules in C* over the commutative monoid Sym(T) in C. That is, a symmetric spectrum X
is a sequence of X, -objects X,, € C and X ,-equivariant maps X, AT — X,,,;, such that the
composite

Xy AT = Xy g AT > 5 X

is X, X X, -equivariant for all n,p >0. A map of symmetric spectra is a collection of
X,-equivariant maps X,, — Y, compatible with the structure maps of X and Y.

(2) A symmetric ring T-spectrum is a ring spectrum E € C* such that there is another unit map
t; : T — E; subject to the following condition:
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132 | GARKUSHA

(Centrality) The diagram

E,,/\Ll Mp
E, AT —% B, AE, ~“~E,,,

twisti \L)(n,l

TAE, E E| ANE, o Eiyp

commutes for all n > 0.
E is commutative if it is commutative as a ring object of C=. A morphism f : E — E’ of
symmetric ring spectra is a morphism of ring objects in C* such that f,i; = Lg.

(3) A right module M over a symmetric ring T-spectrum E is a symmetric right T-spectrum
which is also a right E-module in the sense of Definition 2.2. We denote the category of
right E-modules by Mod E (its morphisms are morphisms of symmetric T-spectra satisfying
Definition 2.2).

Because Sym(T) is a commutative monoid, the category Sp*(C,T) is a symmetric monoidal
category, with Sym(T) itself as the unit. We denote the monoidal structure by X \Y = X Agynr
Y, where X ASym(T) Y is defined similarly to [32, p. 499] as the coequalizer, in CZ, of the two maps
X ASym(T) NY —= X AY induced by the actions of Sym(T) on X and Y, respectively.

Given X € C and a pointed set (K, ), we shall write X A K to denote \/K\* X.Let P e C and
o : P - T be amorphism in C. Denote by T" :=TA JLOAT (respectively, PA\" = PA . AP). This
notation is inherited from the standard notation for pointed motivic spaces T" and P*" associ-
ated with pointed motivic spaces T = A!/(A! — {0}) and (P!, o0), where ¢ : (P!, ) — T is the
canonical motivic equivalence given by the level 1 framed correspondence ({0}, A, t) € Fr,(pt, pt).

In what follows S! is the standard simplicial circle with n-simplices being n, ={0,1, ..., n}
and S" := S'A - ASL. Given a symmetric right T-spectrum E, let 1€ denote the following
Sl-spectrumin S,:

1 := (Hom.(S, E,), Hom.(P, E; A S'), Hom.(P"%,E, A §?),...).
Here each E,, A S™ is performed in every degree to produce a simplicial object in C and a simplicial
Hom-set. We also call 17 the PT-spectrum of E.
Each simplicial Hom-set is pointed at the zero morphism. Each structure map
u, : Hom/(P",E, AS") AS* - Hom (P, E, 1 A S™)
coincides termwise with the natural morphisms

\/ Hom,(P"",E, A S") - Hom,(P"\"*1, \/(En 1 AS™),

where coproducts are indexed by nonbasepoint elements of Srll =n, =1{0,1,...,n}. They take an
element f : P\" — E, A S" of the kth summand to the composition

fAc v1

L
PAHL L (B, AST)AT & (B AT)AS" = By AS" & \[ E,yy AS™

Here ¢ is the inclusion into the kth summand. If E = Sym(T) then 1F will be denoted by 1%.
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Though the author was unable to find the following result in the literature, he does not pretend
to originality.

Theorem 3.2. Given a symmetric right T-spectrum E € Sp*(C, T), the following statements are
true:

(1) the spectrum 1 is a symmetric S*-spectrum;
(2) if E is a (commutative) symmetric ring T-spectrum, then 1F is a (commutative) symmetric ring
Sl-spectrum.

Proof.

(1.) We follow [31, section 1.1] to verify the relevant conditions for symmetric S*-spectra. The left
action of the symmetric group £, on Hom (P ", E, A S™) for each n > 0 is given by conjuga-
tion. In detail, for each f : P\" — E, A S" and each 7 € £, the morphism 7 - f is defined as
the composition

-1

A
i lp At DS B Asn. 3)

With this definition each Hom(P"\", E,, A S™) becomes a Z,-simplicial set. Here Z, acts on
PA" and S™ by permutations.
There are natural morphisms

\/ Hom (P, E, A S") - Hom,(P""+5), \/(En Tk AS™M),
where coproducts are indexed by nonbasepoint elements of Si; =7 Qk = ({1,...,£P%),. They

take an element f : PA" — E, A S" of the (jy, ..., ji)th summand to the composition

vl

~ LG )
prntk 2 (E ASYATE= (B, ATE) A S™ = B,y A ST —2, \/ Ensic AS™

Here;, ;) is the inclusion into the (jy, ..., ji)th summand. The middle arrow comes from
E,ATK - E, +k- It is induced by structure maps of the symmetric T-spectrum E and is
(2, X Zy)-equivariant. Each natural morphism above coincides termwise with the composite
map

U1 © = 0 (u, Aid) : Hom (PN, E, A S") A Sk = Hom (P "*0) B, . AS™HK). (4)
The fact that (4) is (£, X Z})-equivariant follows from commutativity of the diagram

LG

pritk 7 g A S ATE e (B, ATK) A ST —> By AST -2\ B, A ST

(T i TATA i TAUAT i (AT l i (@rtaus

pAn+k (E, ASHOATE — 25 (E, AT)AS" — > E, ) AS" —> \/ Epyp AS"

UpQy k)

in which (7, u) € £, X %, usk permutes summands of the right upper corner by the rule
(1o oo Ji) 2 (uys - » Juciey)- We see that 17 is a symmetric S'-spectrum.
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(2). Suppose E is a symmetric ring T-spectrum. Define multiplication maps
Vo . Home(P"',E, AS™) AHom (P"",E,, AS™)
— Hom (P "™ E, . AS™™), n,m3>0,

by

A M mAid
(f, g) — (PA+mM) EIEN E,AS*AE,AS" 2 E, AE, AS""™ ——— E, ., ASTT™),

where u, ,,, is the multiplication map of E (it is X, X Z,,-equivariant).
The map v, , is X, X Z,,-equivariant. Indeed, this follows from commutativity of the
diagram

n,m

A, ~ M, mAd
prnem N8 E,AS"ANE,ANS" —=E,AE, AS""" ——E, , AS"t™
(T,ﬂ)l r/\r/\m\rrl/ TAHA(T,ﬂ)l i(r,n)/\(r,n)

pAntk E, A Sn AE, A Sm ? E,ANE, A Sn+m 7 En+m A Sntm

n,m

in which (7, 7) € £, X Z,,,. Clearly, the “associativity square”

id Av,

(P, Ey AS™) A (PN, Epy AS™) A (PP, E, A SP) —= (P, E, AS™) A (PN"*P) E,, . A S™+P)

Y, mAid l J/v,,vmw

Vll m,
(PA(n+m)’En+m A ST+ A (P/\p’Ep A SP) +mp (P/\(n+m+p),En+m+p A SHmEP)

is commutative for all n, m, p > 0 due to associativity of the multiplication maps u, , for E.
Next, two unit maps

i : S - Hom.(S,E,) and i; : S' — Hom.(P,E, AS') (5)
are defined as follows. Let (; : S — Ej and ¢; : T — E; be the unit maps for the symmetric

ring T-spectrum E. Then i, takes the unbased point of S° to ¢, and i; coincides termwise with
the natural morphisms taking an unbased simplex j of S} ={0,1, ..., 7} to the composite map

PLTLE < \/E,

where the right arrow is the inclusion into the jth summand.
The two “unit composites”

AR n AR n 0 id Al AR n V0 AR n
(PME,AS") = (PN E,ASYANS" — (P E,AS"Y)A(S,E)) — (PME, AS")

AR n 0 AR n lonid AR ny L on AR n
PME,AS") =S A(PME, ASY) — (S,Ej) A(PM,E, AS") — (PN E, AS™)

are the identity for all n > 0 due to the same properties for E.
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Furthermore, the “centrality diagram”

(P E, AS™) A g1 1A (PN, E, AS™) A (PMNLE; A Sl) s (PMHLE, A ST
twistl l)(m
S A (PMLE, A S”) (P"1 E; ASYHA (PN E, AS™) D (PN E L, A ST

commutes for all n > 0 due to the same properties for E. Here y,, ,, € Z,,,,, denotes the shuf-
fle permutation that moves the first n elements past the last m elements, keeping each of the
two blocks in order.

It follows that 17 is a symmetric ring S'-spectrum. Suppose E is commutative. Then the
square

thst

(PN E, AS")A(PN,E,,, AS™) —— (PN, E,, AS™) A (PN, E, AS™)

Vnm \L i VYm,n

(P/\n+m’En+m A S"+m) #) (PAm+m’Em+n A Sm+n)

commutes for all n, m > 0. We also use here commutativity of the diagram

A - HnmAid
pAntm f‘>g E,AS"AE,AS" ——=E,AE, AS"AS" ——E, ., AS"™

T)(m,n Ttwist twist/\twistT T}(m,n/\}(m,n

= nAid
prmin B p A SMAE AST =B, AE,ASTASTS B A ST
forall f : PA" - E, AS"and g : P\ — E,, A S™. It follows that 1¥ is commutative.  []
Corollary 3.3. Suppose E is a commutative symmetric ring T-spectrum. The category of right
1%-modules Mod 17 is closed symmetric monoidal, where 17 is the commutative symmetric ring

spectrum of Theorem 3.2.

Lemma 3.4. Under the assumptions of Theorem 3.2 two unit maps (5) can be extended to a ring
morphism between symmetric ring spectra § : S — 1%, where S is the sphere spectrum.

Proof. This is straightforward. O

4 | RECONSTRUCTING STABLE HOMOTOPY THEORY SH

We refer the reader to [28] for basic facts on compactly generated triangulated categories. Below
we will often use the following lemma.

Lemma 4.1 (see [13]). Let S and T be compactly generated triangulated categories. Suppose there
exists a set of compact generators X in S and a triangulated functor F . S — T that preserves direct
sums such that

(1) the collection { F(X)|X € £} is a set of compact generators in T,
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(2) forany X,Y in Z, the induced map
Fy y[y : Homg(X,Y([n]) - Hom (FX,FY|[n])

is an isomorphism for alln € 7.

Then F is an equivalence of triangulated categories.

Let Spgi (k) denote the category of symmetric (S', G)-bispectra associated with the closed sym-
metric monoidal category of pointed motivic spaces M (see the notation). Here the G-direction
corresponds to the pointed motivic space G, which is the mapping conein M of themap1 : pt, —
(G,,)+- The category Spg:1 (k) is equipped with a stable motivic model category structure [24].
Denote by SH(k) its homotopy category. If € is a bispectrum and p, g are integers, recall that
7p,4(€) is the Nisnevich sheaf of bigraded stable homotopy groups associated to the presheaf

U € Sm/k — SHK)(ES TS, U, SP~9 AGMN A E).

A map of bispectra f : £ — £’ is a stable motivic equivalence if and only if 7, ,(f) is an isomor-
phism. The category SH(k) has a closed symmetric monoidal structure with monoidal unit being
the motivic sphere bispectrum S, := D Zg’SO (see [24] for detalils).

The following theorem was proven by Levine [25] for algebraically closed fields of characteris-
tic zero, with embedding k © C and extended by Wilson-@stveer [37, Corollaries 1.2 and 6.5] to
arbitrary algebraically closed fields.

Theorem 4.2. Let k be an algebraically closed field of exponential characteristic e and S be the
sphere spectrum Z;‘{ SO. Foralln > 0the homomorphismic : 7,(S)[e”'] —» nn,O(SI;)[e_l] isaniso-
morphism, wherec : SH — SH(k) is the functor induced by the functorc : S, — M sending pointed
simplicial sets to constant motivic spaces.

The following statement was proven by Zargar [38, Theorem 1.1] by using the stable étale
realization functor.

Corollary 4.3. Let k be an algebraically closed field of exponential characteristic e. The triangulated
functor

Lc : SH[1/e] — SH(k)[1/e]

is full and faithful.

Proof. Using Lemma 4.1, our statement follows from Theorem 4.2 if we note that SH[1/e] (respec-
tively, the image of SH[1/e]) is compactly generated by S[1/e] (respectively, by Sz[1/e]). O

Recall from [19] that one of the equivalent ways to define Voevodsky’s framed correspondences
of level n > 0 between smooth k-schemes X,Y € Sm/k is as follows:

Fr,(X,Y) := Hom (X, AP, Y, AT"),

where P (respectively, T") is the smash product of n copies of (P!, o) € M (respectively, T =
Al/(Al —{0}) € M).
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Remark 4.4. Due to Voevodsky’s lemma [19, section 3] there is an equivalent description of the
sets Fr,,(X,Y) in terms of explicit geometric data. In detail, each element in that description is the
equivalence class of a quadruple (Z, U, ¢, g), where Z is a closed subset of A} that is finite over X,
U is an etale neighborhood of Z in AZ, ¢ = (¢, ..., ¢,,) is a collection of regular functions on U
such that N {p; = 0} = Z, and g is a morphism from U to Y. The equivalence relation on such
quadruples depends on the choice of the neighborhood U. If the base field is C and X = Y = pt,
the Hom-sets Hom ,,(P"™,T"), m,n > 0, can also be described in terms of holomorphic framed
correspondences — see [12]. These are equivalence classes of triples (Z, U, f), where Z consists of
finitely many points in C", U is an open neighborhood of Z, f = (f4, ..., f,) : U —» C" isa holo-
morphic map such that Z = f~1(0). The latter description essentially follows from the Implicit
Function Theorem in Complex Analysis.

Following notation of [19] one sets for any finite pointed set K,
Fr,(X,Y ® K) := Hom (X, AP, Y, AT" AK), X,Y €Sm/k.
There is a distinguished framed correspondence o : (P!, 0) = T in Fr, (pt, pt) associated with

the triple ({0}, Al,¢). The external smash product by o gives rise to a map Fr,(X,Y ® K) —
Fr,,1(X,Y ® K). One sets,

Fr(X,Y ® K) : = colim(Fry(X, Y ® K) —— Fr,(X,Y ® K)) —0 --.).

LetA; denote the standard cosimplicial affine scheme n — Spec(k[x,, ..., x,]/(Xq + - + x,, — 1))
and C, Fr(X,Y ® K) := Fr(X X ALY ® K). By the Additivity Theorem of [19], the assignment

KeT%® - C,Fr(X,Y ®K) €8, (6)
gives rise to a special I'-space of pointed simplicial sets. Its Segal S!-spectrum C, Fr(X,Y ®
(Z;‘; 5%)) is denoted by M fr (Y)(X) and is called the framed motive of Y evaluated at X.

The following theorem was proven by Garkusha and Panin [19] for algebraically closed fields
of characteristic zero, with embedding k < C.
Theorem 4.5 (Garkusha-Panin [19]). Let k be an algebraically closed field of characteristic O.

Then the framed motive M ;,.(pt)(pt) of the point pt = Spec(k) evaluated at pt has the stable homo-
topy type of the classical sphere spectrum S = Zg‘; SO. If k is an algebraically closed field of positive

characteristic e > 0 then M ,.(pt)(pt)[1/e], pt = Spec(k), has the stable homotopy type of S[1/el].
Proof. The proof literally repeats that of [19, Theorem 11.9] if we use Corollary 4.3. O
Definition 4.6. Given a field k, denote by

1, := (Fry(pt, pt), Fr;(pt, S1), Fr,(pt, S),...), pt = Spec(k),

the right S'-spectrum of pointed simplicial sets with structure maps defined as

Fr,(pt, S™) A Fr,,,(pt,S™)— Hom (S*, Fr,,(pt, S"*1).
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The sphere spectrum over a field k is the S'-spectrum of pointed simplicial sets
Sk 1= (Fro(Ar, pb), Fri(Ar, S1), Fry(4;, 52), ).

The simplicial set Fr,,(pt, S”*) can be regarded as the constant simplicial pointed set S™ together
with the “coefficients set” Fr,,,(pt, pt) attached to it. Hence, the S'-spectrum 1, can be regarded as
a graded “tensor algebra” associated to S with “Fr,(pt, pt)-coefficients”. In other words, we add
Fr, (pt, pt)-coefficients to the classical sphere spectrum S = (S, 51, ...).

Proposition 4.7. The spectra 1;, S, are commutative symmetric ring spectra in S pgl.

Proof. We apply Theorem 3.2: C is replaced by the category of pointed motivic spaces M, P
(respectively, T) is replaced by PA : = (P!, 0o) (respectively, by T = Al /(A! — {0})), E is replaced
by the commutative symmetric sphere T-spectrum S, = (S°, T, T2, ...). With this notation 1, = 1¥
of Theorem 3.2, and hence a commutative symmetric ring spectrum.

The commutative symmetric ring structure on S, is defined in a similar fashion if we use the
cosimplicial diagonal morphism diag : A, — A} X A;. 1

Denote by Mod S, the category of right S, -modules in S P§1- The natural map of ring objects
S — S induces a pair of adjoint functors

L: Sp;, = ModS, : U, (7)
where U is the forgetful functor and its left adjoint L is the “extension of framed scalars” functor.
Following [32, section 4], we define the stable model structure on Mod S, by calling a map f of
Si-spectra a stable equivalence or fibration if so is U(f). By [32, Theorem 4.1] this model structure
is also cofibrantly generated monoidal satisfying the monoid axiom. By construction, (L, U) is a
Quillen pair.

Definition 4.8. The category Mod S, is called the category of framed symmetric S*-spectra over
a field k. The stable homotopy category over a field k, denoted by SH,, is defined as the homo-
topy category of Mod S, with respect to the stable model structure. SH; is a closed symmetric

monoidal category.
IfNeS pgl is a symmetric right S!-spectrum, define an S'-spectrum
FrX(N) := (Ny, Hom (P"', T A N;), Hom ((P"*, T? AN,), ...).
Each structure map
v, : Hom ,(P",T" AN,) A S* = Hom (P, T"" AN,,,1)
coincides termwise with the natural morphisms

\/ Hom (P, T" AN,,) — Hom (P, T"*"1 AN,,),
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where coproducts are indexed by nonbasepoint elements of S} =7, ={0,1,...,¢}. They take an
element f : PM — T" A(N,)), of the kth summand to the composition

A L
prn+1 11 (T"A(N))AT =T A(N,), & \/ T AN,

id Au,
= (T AWNDDASL 2T AN, ASY, —— T ANy
where u,, is the nth structure map of N. We can equivalently define v, by the composition
Hom,,(P"", T" AN,) A S — Hom,(P"",T" AN, A S') —— Hom,,(P""*1, T" AN, AS' A T)
(un).
=~ Hom (P, T"" AN, A S') — Hom ,(P"",T" AN,,,).
We also define an S!-spectrum

C, Fr(N) := (Ny, Hom (((A}); AP, T AN,),Hom (A}, AP, T? AN,),...)

with the structure maps defined as above.
Frf(N )and C, Frf(N ) are symmetric S'-spectra for the same reason as 17 and S, are.
Following notation of [15, 19], one sets for any finite pointed set K and any integer k > 0,

Fr,(X,(Y X T") ® K) := Hom (X, AP, Y, AT**" AK), X,Y € Sm/k.

The external smash product by o gives rise to a map Fr,, (X, (Y X TH®K) —» Fr, (X, (Y x T ®
K). One sets,

Fr(X,(Y x TF) ® K) := colim(Fr,(X, (Y x T*) ® K) AN Fr,(X, (Y x T*) ® K)) A
and
C.Fr(X,(Y X T") ® K) := Fr(X X A, (Y x T") @ K).
By the Additivity Theorem of [19], the assignment
KeTl%® C, Fr(X,(Y xT") ® K) €S,

gives rise to a special I'-space of pointed simplicial sets. The pointed motivic space X € Sm/k —
C.Fr(X,(Y xTK) ® K) €8, is denoted by C, Fr((Y x T¥) ® K) in [15, 19]. If Y = pt the latter
motivic space is denoted by C, Fr(T* ® K).

Definition 4.9. The symmetric framed motive of a symmetric S!-spectrum N € S P§1 is the
symmetric S 1 -spectrum

MJ%r(N) := (C, Fr(pt, pt ® N,), Hom (P!, C, Fr(T ® N,)), Hom ,,(P"?,C, Fr(T*> ® N,)), ...)

with structure maps and actions of the symmetric groups defined similarly to C, Frf(N ). The
framed motive of the suspension spectrum Z;‘;X of a pointed simplicial set X will be denoted by

M?r(X).
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Remark 4.10. If N is the suspension symmetric spectrum E;X of a pointed simplicial set X, the
framed motive in the sense of the preceding definition is a bit different from the framed motive
of X evaluated at pt defined as

M.(X) 1= C, Fr(pt, pt ® (3 X)),

where K € I'P — C, Fr(pt, pt ® K) € S, is the special I-space (6).

Lemma 4.11. If k is a perfect field, then the canonical map of ordinary S*-spectra M (X)) —
M?F(X ) is a level equivalence in positive degrees for any pointed simplicial set X.

Proof. Repeating the proof of [14, Lemma 4.12] word for word, we have that the canonical map of
connected spaces

C, Fr(pt, pt ® (X A §¥)) = Hom ,,(P"*,C, Fr(TF ® (X AS7))), k,Z >0,

is a weak equivalence. It follows that the map M ,.(X) — M?r(X ) is a level equivalence of spectra
in positive degrees. 1

The reader should not confuse 7,.-isomorphisms (i.e., maps inducing isomorphisms of stable
homotopy groups) and stable equivalences of symmetric spectra. The first class is a proper subclass
of the second.

Though M,(X) is canonically a symmetric S L_spectrum, where %, acts on each space by
permuting S”, the point is that it is not a S; -module in contrast with M]Enr(X ).

Proposition 4.12. Givena fieldk and N € S p?l, the following statements are true.

O c, Frf(N) and M;*r(N) are right S,-modules.

(2) Every map of symmetric S'-spectra f : N — N’ induces morphisms of right S,-modules
C,Fr*(f) : C,FrX(N) » C, Fr*(N') and M?r( f): MJ%r(N) - MjEr(N’).

(3) Thecanonicalmapa : S, — M?V(SO) inMod Sy, is a ,.-isomorphism (i.e., a stable equivalence
of ordinary spectra) whenever the base field k is perfect.

(4) ForeveryN € S p§1 the canonicalmap 8 : C, Frf(N ) — M?F(N )isa 7, -isomorphism whenever
the base field k is perfect.

Proof.
(1). The desired pairing

(C* FIE(N) A Sk)m = \/ (Zq+p)+ /\quzp C* Frq(Nq) A Frp(A.’ Sp) - C* Frm(Nm)
q+p=m

is defined as follows. Given two morphisms (8 : Ai APMN — T9 A Nq) € Frq(Af ,Nq) and
(a : AY AP — TP A SP) € Fr (A7, SP), define a morphism 8 % a € Fr(A”,N,, ) as the
composite

diagaid
s

(A7), APNaHP) (A7 X A7), APNITP) = (AT APMN) A (A] APMP)

BAa
—— (TTANDA(TP ASP) 2 TTP ANy ASP — TTP ANy, ).
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).
3).

(4).

It is straightforward to see that this pairing is £, X Z ,-equivariant, satisfies associativity and
unit conditions, hence it defines the structure of a right S,-module on C, Frf(N ). For the
same reasons, M?V(N ) is aright S;.-module.
This is straightforward.
Let @;‘i be the naive stabilization functor of S'-spectra. It has the property that X — G)g‘i X
is a stable equivalence for every S!'-spectrum X [22, Proposition 4.7].

Let Ay, :=C.(P",T"AS"), By, = C, (PAmtn) pmin A 61y n,r > 0. We have
maps of spaces

o o o
An,r - An+1,r and Bm,n,r - Bm+1,n,r - Bm+1,n+1,r'

Let A, :=colim,, A, ,, By, , :=colim, B,, ,,,, B, :=colim,, , B, , .. The spaces A,, B,
constitute right S!-spectra A and B. Each structure map A, - Hom(S!, A,,) is the

composite map determined by the following commutative diagram

A, : (l]:l)/\r’ T A Sr) g o (PA(r+1),Tr+1 A Sr) 9 ...
| |
(ﬂ:p/\(r+1) Tr+1 /\Sr) ° ; (P/\(r+2) Tr+2Asr) 9 o ..
—/\S]l —/\Sli
Hom(Sl,A,H) : (Sl’(ﬂj)/\(r+1)’Tr+1 A STH1)) (@.5") (Sl,([FDA(HZ),THZ A STH1Y) (U’S;)

(we omit C, here and below for brevity). Each structure map B, — Hom(S?, B, ) is defined
in a similar fashion.
There is a commutative diagram of spectra
Jse

//fﬂmmm“.\X .
Sk a A j 951 (A)

A
cxl CL l@):ﬁ(c)

M2 (8%) *—> B —> O3 (B)
e

~——

i (s
JMfr(‘sU)

in which e A) = S (Sp), S (B) = Ot M ZV(SO)). The maps a, b, ¢ are defined in a canon-
ical way. By the two-out-of-three property a, b are stable equivalences. Therefore, « is a stable
equivalence if and only if ¢ is.

But c is the infinite composition
A, =By, > By, > By, > - B,.
Each composition A, — B,, , is isomorphic to the canonical map of spaces
C, Fr(S") - Hom ,(P"",C, Fr(T™ ® S")).

Repeating the proof of [14, Lemma 4.12] word for word, the map is a weak equivalence for
positive r, and hence c is a weak equivalence in positive degrees.
The proof literally repeats that of (3) if we replace S” by N,. O
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Recall that we distinguish classical (also called naive) stable homotopy groups 7,(N) of N €
> 113 ” .
Sp o and “true” stable homotopy groups (denote them by z_(N), see, e.g., [31] for details). They
coincide for semistable symmetric spectra.

Corollary 4.13. Given a perfect field k, the symmetric spectrum S, is semistable and 7y(S;) =
7,(Si) = K)™W (k), where K}V (k) is the Milnor-Witt group of k.

Proof. By [19, Corollary 11.2] 77.'0,0(2;? ngSO) = 7y(M,(pt)). By a theorem of Morel [26], one has

nO,O(E;’ Dy S = Ké‘/’ W (k). By definition [19], M, (pt) is the Segal symmetric spectrum associated
with a special I'-space. Therefore, M ;,(pt) is semistable by [30, Example 4.2]. Our statement now

follows from Lemma 4.11 and Proposition 4.12(3). O

By e~!-stable equivalences (respectively 7, [e~!]-isomorphisms), we mean maps of symmet-
ric spectra (respectively, ordinary spectra) inducing isomorphisms in SH[e™!] (respectively,
isomorphisms of stable homotopy groups with e~!-coefficients).

Theorem 4.14. Ifk is an algebraically closed field of exponential characteristic e, then the natural
maps of symmetric S*-spectra

. ) . >
v:N-C,Fry(N), Bov:N- M (N)

are it [e~']-isomorphisms, where 3 : C, Frf(N )— M?r (N)is a canonical map. In particular, a map
y . N = N’ of symmetric S'-spectra is an e~!-stable equivalence or a 7, [e~]-isomorphism if and
only ifMJ%r(y) is.

Proof. The map S is a 7, -isomorphism by Proposition 4.12(4). Consider a commutative diagram

N —2~C, FrX(N)

a
AN

We see that a is a 7, -isomorphism. Therefore, v is a 77, [e~!]-isomorphism if and only if xy; is.

We claim that the map of S*-spectra xy : INX - M rX)isam, [e~1]-isomorphism. Indeed,
if X is a finite pointed set regarded as a constant simplicial pointed set, this follows from
Theorem 4.5. If X is any pointed set, then xy is a directed colimit of maps xy,, where W
runs over finite pointed subsets of X. Hence, xy is a 7, [e~!]-isomorphism as directed colimits
preserve 7, [e!']-isomorphisms. Finally, as the geometric realization of a simplicial 7, [e~!]-
isomorphism is an 7, [e~!]-isomorphism, then so is xy for an arbitrary pointed simplicial set X
as claimed.

Next, every (ordinary) spectrum N € Spg1 equals colim; L;(N), where each spectrum L;(N) =
(Nogs s Ni_1, Niy Ny AST,N; A S?,.....). Then xy @ N — M, (N) equals xy = colim; x (y). It is
a m,[e!]-isomorphism as each XL,(N) is (this follows from the previous claim about xy).
Therefore, the natural map of S'-spectra xy : N = M,(N) is a 7,[e"]-isomorphism for all
N € Spqi. O
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We are now in a position to prove the main result of this section saying that the stable
homotopy category of classical symmetric spectra can be recovered from the stable homotopy
category of framed spectra over an algebraically closed field (after inverting the exponential
characteristic).

Theorem 4.15. Suppose k = k is an algebraically closed field of exponential characteristic e. The
Quillen pair (L, U) (7) is a Quillen equivalence. In particular, it induces an equivalence of compactly
generated triangulated categories

L : SH[e™'] 2 SHy[e™'] : U.
Moreover, the equivalence L is isomorphic to the functor

MJEV : SH[e™'] — SH[e!]

that takes a symmetric S'-spectrum N to its symmetric framed motive M chr(N ).

Proof. SH = Ho(S p?l) is compactly generated by the sphere spectrum S. SH), is compactly gen-
erated by the framed sphere spectrum S;.. By construction, L(S) = S;. Therefore, our statement
that (L, U) is a Quillen equivalence reduces to showing that the composite map of S!-spectra is a
e~ l-stable equivalence

91 S — ULS)=U(S,) - US)),

where Si is a fibrant replacement of S, in Mod S;, (we also use Lemma 4.1 here).

We claim that Si = Qsler(Sl). Indeed, the canonical map « : S, — M?r(SO) in Mod S, is a
7.-isomorphism by Proposition 4.12(3). It follows from [19, Theorem 4.1] that M?r(SO) is a pos-
itively fibrant symmetric Q-spectrum, and hence QslMﬁr(Sl) is an Q-spectrum. It follows that
S£ = QslM?r(Sl). Theorem 4.14 implies that ¢ is a 77, [e ! ]-isomorphism.

Next, Theorem 4.14 implies that N M]Zcr(N ) induces a functor

Mj%r : SH[e '] = SHy[e™!].

We have that M?F(S) =~ S, is a compact generator. The first part of the proof implies that
SH[e™'1(S[*], ) > SHy[e™" (M7, (S)[*], M7, (5))

is an isomorphism of graded Abelian groups, hence M?r is an equivalence of compactly gener-

ated triangulated categories by Lemma 4.1. By Theorem 4.14, the canonical map of S!-spectra

N - M?V(N) is a 7 [e”!]-isomorphism for any N € S P§1- Therefore, id — UoM?r is an iso-

morphism of functors. Composing it with (M?r)_l, where (M?r)_1 is a quasi-inverse functor
to M?r, we get an isomorphism of functors (M}%r)‘1 ~ U. By the first part of the proof L is
a quasi-inverse functor to U, and hence L is isomorphic to the functor Mzr, as was to be

shown. 0
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5 | SPECTRAL CATEGORIES ASSOCIATED TO SYMMETRIC RING
SPECTRA

In what follows by a spectral category, we mean a category enriched over the closed symmetric
monoidal category of symmetric S'-spectra S p?l .

Recall from [31, Construction 5.6] that for every pair of symmetric spectra X, Y a morphism X A
Y — Ztoasymmetric spectrum Z is the same as giving a bimorphism b : (X,Y) —» Z. We define a
bimorphismb : (X,Y) — Z as a collection of £, X £ -equivariant maps of pointed simplicial sets
byt X, NYy — Z,,,for p,q > 0,such that the “bilinearity diagram” commutes for all p, g > 0:

1 XpAtwist 1
X, AY ASt ———=XPAS'AY,

XpN0,
P9
/ \pr.q/\sl \Lop/\yq

1
X, AY Zyiq NS Xy AY, (8)
T i b
Zpig+ XX1g Zpi14q

In this section, C is the category from Section 2.

Definition 5.1. Suppose Bis a full subcategory of C closed under Aand o : P — T is a morphism
in C. Let E be a symmetric ring T-spectrum in Sp*(C, T). We define the symmetric S'-spectrum
of (E, o)-correspondences Corr:?(X, Y) between two objects X, Y € 1 as follows. First, let

Corrf9(X,Y) := Hom (X APM,Y AE, AS™).

This simplicial setis pointed at the zeroth map. By definition, Corrg “(X,Y) := Hom(X,Y A E,).
Similarly to (3), each Corr:?(X, Y) is a £,,-simplicial set. The left action of %, on Corr>?(X,Y) is
given by conjugation: foreach f : X AP — Y AE, AS" and each 7 € %, the morphism 7 - f is
defined as the composition

XArt YATA
x AP 2 xap Ly ag, a5t LS v AR, A ST

Second, repeating the proof of Theorem 3.2(1) word for word the morphism o induces natural
(Z,, X Zy)-equivariant maps

Corr’;j"’(X, Y)ASK > Corrgfk(X, Y),
so that
Corr9(X,Y) := (Corr,°(X,Y), Corr}(X,Y), Corr} (X, Y), ...)
becomes a symmetric S'-spectrum.
Define a pairing

Pvz: CortP9(X,Y) A CortZo(Y, Z) - Cort?? (X, Z)
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by the rule: 9%, (f : X AP > Y AE,AS",g:YAP"" - ZAE,, AS™) is given by the
composition

APAM t AE,
x AP AP Iy B Ast AP Ly A prm A B, A sn 220

Z Ny i AST AS™

t
Z/\Em/\S”‘/\En/\S”—w>Z/\En/\Em/\S”/\S’”—>Z/\E A S,

n+m
Theorem 5.2. Let E be a symmetric ring T-spectrum in Sp*(C,T) and B is a full subcategory of C
closed under monoidal product. Then B can be enriched over the closed symmetric monoidal cate-
gory of symmetric S'-spectra S P§1- Namely, S pgl -objects of morphisms are defined by the symmetric
spectra Corrf’a(X ,Y) of (E, o)-correspondences. Compositions are defined by pairings ¢y y ;. The
resulting S p§1 -category is denoted by Corrf ‘“(B). Moreover, the S P§1 -category Corrf 2 (B) is symmet-
ric monoidal with the same monoidal product on objects as in B whenever E is a commutative ring
T-spectrum.

Proof. The identity morphism is defined by

p ! idy At

X = XAS—— X AE, € Corrj (X, X),

where (, : S — E| is the unit map. Our proof now literally repeats that of Theorem 2.4. The only
thing one has to care about is that the pairings occurring here are bimorphisms of symmetric
spectra. This is clearly the case if one chases over the diagram (8). It is also worth noting that
(Ey,E; ASY,E, AS?,...) is a ring object in the category of simplicial symmetric sequences in C,
which is commutative whenever E is. O

The proof of the theorem implies the following result.

Corollary 5.3. Under the notation of Theorem 5.2 any morphism of two symmetric ring T—spectra
y 1 E = E' in Sp>(C, T) induces a morphism of spectral categories y, : Corr>(B) — Corr” “(B).

Day’s Theorem [2] together with Theorem 5.2 also imply the following result.

Corollary 5.4. Under the notation of Theorem 5.2 if E is a commutative symmetric ring T-spectrum
then the category of right Corrf “?(B)-modules is a closed symmetric monoidal category.

Theorem 5.5. Suppose E is a commutative symmetric ring T-spectrum in Sp*(C, T). Under the
assumptions of Theorem 5.2 the spectral category Corrf 9(B) is also a symmetric monoidal Mod 1°-
category with the same monoidal product on objects as in I3, where Mod 1F is the closed symmetric
monoidal category of Corollary 3.3.

Proof. Each symmetric spectrum Corrf’g(B)(U, V), U,V € Ob B, is canonically in Mod 17 if we
define compositions 6, , Corri’g(B)(U, VIANLE - Corrﬁfr(B)(U, V) by

V Ay ASTHT

AP AF Ihg p r tw n+r n+r
UAPYAPN 25V AE, ASP AE, AS" — V AE, AE, AS™ ——— V AE,,, AS™,

n+r

85UB0|7 SUOLUILLIOD aA 81D 3|qeal|dde ayy Aq peussnob e Sajole O SN JO S8 10} ARid 18Ul U A8]IAA UO (SUOIIPUOD-pUe-SWR) W0 A8 | 1M AReJq 11 [UO//:SA1Y) SUONIPUOD pUe SWie | 8U1 89S *[£202/0T/20] Uo Akiqiauljuo A8 |IM ‘191 Aq 9502T EW /2T TT 0T/I0p/Woo" A8 1M Areig 1 ou 1 [U0"00SUTRWPUO|//:Sdny Wolj pspeojumoq ‘T ‘€202 ‘98672502



146 | GARKUSHA

where f € Corrg’a(B)(U, V), g € lf and u, , is the multiplication map of E. The proof is like that
of Theorem 5.2 if we observe that the diagram

XpAtwist

E 2] E
XpAY AL ——— = XP AL AY,
X, A8,
"z ib,,,qu lepv,/\yq
E
Xp AYqyr Zpig N1, Xpir NY 9)
m iemq,r lbmw
Zp+q+r X1y Zp+r+q

is commutative with X = Corr®(B)(U,V),Y = Cort>°(B)(V,W),Z = Corr>°(B)(U, W) and
b=oyyw- (]

Corollary 5.6. Under the notation of Theorem 5.5 any morphism of two symmetric ring T-spectra
y 1 E = E' in Sp>(C, T) induces a morphism of Mod 1£-categories y, : Corr>(B) — Corr” “(B).

Day’s Theorem [2] together with Theorem 5.2 also imply the following result.

Corollary 5.7. Under the notation of Theorem 5.5 if E is a commutative symmetric ring T-
spectrum then the category of Corrf’U(B)—modules in the category Mod 1¥ is a closed symmetric
monoidal category.

6 | ENRICHED MOTIVIC HOMOTOPY THEORY

One of the approaches to Morel-Voevodsky’s stable motivic homotopy theory SH (k) over a field
k is by means of symmetric T-spectra S p?(k), where T = Al /(A! —{0}) (see, e.g., [24]). In detail,
we start with motivic spaces M equipped with the flasque motivic model structure in the sense
of [23] and then pass to S p%(k) equipped with the stable model structure. The homotopy category
of the latter model category is denoted by SH(k).

A genuinely local approach to SH(k), envisioned by Voevodsky in 2001, is presented in [20]. It
is based on Voevodsky’s framed correspondences and the machinery of framed motives [19].

In this section, we suggest yet another (genuinely local) approach to SH(k) and, more generally,
a local model for the category of E-modules in SH(k), where E is a symmetric Thom ring spec-
trum. It is an application of enriched category theory of spectral categories and spectral modules
of Section 5. The same approach was used in [16, 17] to construct the theory of K-motives.

Following [14], a symmetric T-spectrum E is called a Thom spectrum if each motivic space E,,
has the form

El’l = COlin‘ll E En,i = Vl’l,i/(Vrl,i bl Zn,i)’

n,i»
where V,,; — V, ;1 is a directed sequence of smooth varieties, Z,, ; — Z, ;. is a directed system
of smooth closed subschemes in V,, ;. We say that a Thom spectrum E has the bounding constant
d if d is the minimal integer such that codimension of Z, ; in V,, ; is strictly greater than n — d for
all i, n. The T-spectrum E is said to be a spectrum with contractible alternating group action, if for
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any n and any even permutation 7 € £, there is an Al-homotopy E, — Hom(A!, E,)) between the
action of 7 and the identity map. In other words, E neglects the action of even permutations up to
Al-homotopy.

Unless it is specified otherwise E is a symmetric Thom ring T-spectrum with the bounding con-
stant d < 1 and contractible alternating group action throughout this section. By [14, Lemma 10.2],
E € SH*'(k), where SH®f (k) is the full triangulated subcategory of SH(k) of effective T-spectra.
It is compactly generated by the suspension T-spectra Z°X,, X € Sm/k. For instance, E is the
algebraic cobordism T-spectrum MGL or motivic sphere spectrum S, = (S°, T, T?,...). Other
examples are commutative symmetric ring T?-spectra MSL and MSp [29]. The results that use
T?-spectra are the same with those proven in this section and which use T-spectra. For brevity,
we will deal with T-spectra only.

We can apply Theorem 5.5 to the following data:

o C=M,;

o the canonical map o : PAl — T, where P! := (P!, 00) € M, given by the framed correspon-
dence ({0}, Al,t) € Fr,(pt, pt);

o B={X, |X € Sm/k}

Within this notation, the symmetric monoidal spectral category Corrf *?(B) of Theorem 5.5 will be
denoted by ©F for brevity and each Corr>(B)(X,Y) = Hom (X, AP, Y, AE, A S") will be
denoted by Frf (X,Y ® S"). Recall from [19, section 3] that each simplicial set Fr’j: X, Y®Ss" =
Hom (X, AP, Y, AE, AS™) hasan explicit geometric description due to Voevodsky’s lemma.

Similarly to Definition 4.6, we can consider a spectral category Oﬁ that is obtained from O by
applying the Suslin complex to symmetric spectra of morphisms:

OX(X,Y) 1= (Fry (A; X X, Y),Fri(A; xX,Y ® 1), ..).

Let O be a spectral category and let Mod © be the category of @-modules. Recall that the projec-
tive stable model structure on Mod © is defined as follows (see [33]). The weak equivalences are
the objectwise stable weak equivalences and fibrations are the objectwise stable projective fibra-
tions. The stable projective cofibrations are defined by the left lifting property with respect to all
stable projective acyclic fibrations.

Let Q denote the set of elementary distinguished squares in Sm/k (see [27, 3.1.3])

U ——=X'
| o )
U——X
and let O be a spectral category over Sm/k. By Q denote the set of squares
O(=,U") — O(-,X")
i 0Q i¢> (10)

which are obtained from the squares in Q by taking X € Sm/k to O(—, X). The arrow O(—, U’) —
O(—,X") can be factored as a cofibration O(—,U’) » Cyl followed by a simplicial homotopy
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equivalence Cyl — O(—,X"). There is a canonical morphism Ay, := O(—,U) Ueoon Cyl =
O(=, X).

Definition 6.1 (see [16, 17]). We say that © is Nisnevich excisive if for every elementary distin-
guished square Q the square OQ (10) is homotopy pushout in the Nisnevich local model structure
on Spgl(k) :=Sp*(M,Sh).

The Nisnevich local model structure on Mod © is the Bousfield localization of the stable
projective model structure with respect to the family of projective cofibrations

No =1{cyl(Apg = O(=, X))o,

The homotopy category for the Nisnevich local model structure will be denoted by SH;if(D.

Suppose © is symmetric monoidal. By a theorem of Day [2], Mod O is a closed symmetric
monoidal category with smash product A and O(—, pt) being the monoidal unit. The smash
product is defined as

0bORO
M Ao N = / MX)ANXY)AO(—,X XY). (11)

The internal Hom functor, right adjoint to — A M, is given by

ModO(M, N)(X) := Sp*(M,N(X x -)) = /Y . Sp*(M(Y),N(X X Y)).
S

By [6, Corollary 2.7] that there is a natural isomorphism
O(=,X) Ao O(—,Y) =2 O(—,X XY).

Theorem 6.2 [16]. Suppose O is a Nisnevich excisive spectral category. Then the Nisnevich local
model structure on Mod O is cellular, proper, spectral and weakly finitely generated. Moreover, a
map of @-modules is a weak equivalence in the Nisnevich local model structure if and only if it is a
weak equivalence in the Nisnevich local model structure on S P§1 (k). If O is a symmetric monoidal
spectral category then the model structure on Mod O is symmetric monoidal with respect to the smash
product (11) of O-modules.

In our setting, we regard spectral categories OF, Oi as symmetric monoidal Mod 17 -categories
with the same monoidal product on objects as in Sm/k (see Theorem 5.5), where Mod 17 is the
closed symmetric monoidal category of Corollary 3.3. Denote by Mod©* and Mod@i the closed
symmetric monoidal categories of OF - and OE-modules in the category Mod 17 (see Corollary 5.7).

The Nisnevich local model structure on Mod©F and Mod@i as well as their homotopy
categories SHI OF and SHFO} are defined similarly to Definition 6.1.

Given X € Sm/k and a motivic space G € M, denote by C,FrE(X, AG) the pointed
motivic space U € Sm/k — Hom ,((U X AI‘()+ APN X . AGAE,). One has a canonical map
C,Frl(X, AG) = C,Frl (X, AG) defined by the composition

—A
Hom,,((U X A;); APY, X, AGAE,) ki

Hom (U x A;)y APM* X, AGAE, AT) —» Hom | (U XA, AP X, AGAE,y).
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‘We set,
C,Frf(X, AG) := colim(C, Fri (X, AG) > C,Frf (X, AG) - --).
If we drop AL from the definition of C, Frf (X + A G), one gets motivic spaces Frf(x + AG).

Definition 6.3. The symmetric E-framed motive of a smooth algebraic variety X € Sm/k is the
symmetric S 1 -spectrum

Mp(X) := (C,Fr¥(X),Hom , (P"',C, Fr¥(X, AE; ASY)),Hom, (P"*,C,Fr¥(X, AE, AS?),..)
with structure maps defined similarly to M?V(N ) of Definition 4.9.

Remark 6.4. The E-framed motive in the sense of the preceding definition is a bit different from
the E-framed motive of X in the sense of [14] defined as

Mp(X) :=(C, Frf(X),C, Frf (X A S1)),C, Frf(X A §?)),...).

Lemma 6.5. Ifk is a perfect field, then the canonical map of ordinary S*-spectra M(X) — ME(X )
is a level local equivalence in positive degrees for any X € Sm/k.

Proof. The proof is like that of Lemma 4.11. We also use [14, section 7] here. O

Though M (X) is canonically a symmetric S'-spectrum in S P§1 (k), where X, acts on each space
by permuting S", the point is that it is not an Oi-module in contrast with ME(X ).

Proposition 6.6. Given a field k and X € Sm/k, the following statements are true:

(1) MZ(X) is an O -module.
(2) The canonical map « : Of(—,X ) —> ME(X )in Mod@f is a sectionwise 7 -isomorphism (i.e., a
stable equivalence of ordinary spectra) whenever the base field k is perfect.

Proof.

(D). ME(X )is an Oi-module for the same reasons as the representable O’i(—,X )is.
(2). The proof is like that of Proposition 4.12. We also use [14, section 7] here. O

Theorem 6.7. Let k be a perfect field. The commutative spectral category (9’§ is Nisnevich exci-
sive and the Nisnevich local model structure on ModO’i has all the properties of Theorem 6.2.
The category SHgif@i is closed symmetric monoidal compactly generated triangulated with com-
pact generators being the symmetric E-framed motives {ME(X ) | X € Sm/k}. The monoidal product
MZ(X) AF ME(X) in SHging" is isomorphic to ME(X X Y).

Proof. (9§ is Nisnevich excisive by [14, section 9], Lemma 6.5, and Proposition 6.6. The fact that
the Nisnevich local model structure on ModOi has all the properties of Theorem 6.2 follows from
the fact that (9]2 is Nisnevich excisive symmetric monoidal.

SHgifOf is closed symmetric monoidal compactly generated triangulated with compact gen-
erators being the representable O%-modules {O% (-, X) | X € Sm/k}. The isomorphism MZ(X) A
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MZ(Y) = ME(X X Y)in SH;'fOE follows from the isomorphism
O (=X XY) = O(=,X) ANOY(=,Y) = O (=, X) A" O} (-,Y)

and Proposition 6.6(2). The previous proposition also shows that compact generators can be given
by the symmetric E-framed motives {ME(X )| X € Sm/k}. [

Let G’r;ll be the mapping cone in A° Fr((k) associated with 1 : pt — G,,,. There is a suspension
functor £¥ from Mod@i to (S!, G)-bispectra Sps1 (k):

2 (X) 1= (X(p), X(G)1), X(G)2), .).

Here X (an”) =X /\Mowi (9}&:(—, Gf\n”) is regarded as a presheaf of S-spectra. Each structure map
is induced by the adjunction unit morphism

X(G/,;ln) - HomMOd(ﬂg (Oi(_’ G:\yll)’ X(Gi\nn+1))

Corollary 6.8. Let k be a perfect field. There is a triangulated equivalence of compactly generated
triangulated categories

nis eff
SHETOF =~ Modg ! E.

Proof. SH(k) = Ho(S p%(k)) is naturally zigzag equivalent to the category of bispectra SH(k) =
——eff

Ho(Spg1 g(k)). Let ModzH(k)E be the essential image of Modgf;[(k)E under this zigzag equiva-

E is compactly generated by the images of {X, AE | X e Sm/k}

E to

lence. The category ModSH(k)

in ModSH(k)E By the proof of [14, Theorem 9.13] the latter are isomorphic in Mod
motivically fibrant bispectra

SH(k)

MEX); 1= (Mp(X)p, Mp(X, AGLD) 1, Mp(X, AG)) s, ),

where “f” refers to level local fibrant replacements of motivic S'-spectra. We have a triangulated
functor of compactly generated triangulated categories

LEY @ SHFO) — ModSH(k)
By Lemma 6.5, Proposition 6.6, and Theorem 6.7, Mp.(X); = LE® (O%(—, X)). It follows that LE

takes compact generators to compact generators with isomorphic Hom-sets. It remains to apply
Lemma 4.1. O

Next, we can stabilize our constructions in the Gﬁj-direction as follows. Denote by — [X] GQ}
the endofunctor X € Mod@’i - X(anl). Following Hovey [22, section 8], we consider the stable
model structure on Ggql-symmetric spectra S pz(Mod(9§, GQ}) (we start with the Nisnevich local
stable model structure on Mod©®* +)- Its homotopy category is denoted by SH SLG,, (9’;. Given X €

H“'S(DE we write X(1) to denote X X G)!.
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Corollary 6.9. Let k be a perfect field. There is a triangulated equivalence of compactly generated
triangulated categories

SH;if,Gm(ﬂi ~ Modgy ) E,

where Modgy i) E is the category of E-modules in SH (k). Moreover, the functor

IE 1 SHEOK - SHE Gm(of

is fully faithful. In particular, Homg is oz (X, X") = Homgnis oz (X (1), X' (1)) is an isomorphism for
1A 1A
is
allxX, X' € SH';'IS(‘)A.

Proof. The proofis similar to that of Corollary 6.8. We compare compact generators and Hom-sets
between them in both categories. O

It is worth mentioning that we do not use any motivic equivalences or the Al-relation in any
of our definitions above (similarly to constructions of [20]). All constructions here are genuinely
local. On the other hand, we can do the usual Voevodsky approach [34] to constructing the tri-
angulated category of motives DM®f (k). We start with the spectral category @F and Cech local
model structure on the stable model category of @F-modules Mod©F.

For each finite Nisnevich cover {U; — X} we let OF(—,U,) be the realization of the simpli-
 stands for the smooth scheme U;, Xx -+ Xx U; . The reader should not con-
fuse OF (-, U,,) with the realization OF (—, C(U,.)) of the simplicial module which in dimension n

).

maps. Here U; _;

..... iy~ lgedy

------

equivalence of ordinary S'-spectra.

Proof. 1t is enough to show that the natural map

B (FrEX, V), Fif(X,v @ SY),..) v (Frf (X, W), Frff (X, W ® §1),...) —
- (FriX,Vuw),FriX,(vuw)®sh),..)

is a stable equivalence of ordinary S'-spectra for any X, V, W € Sm/k. This is a stable equivalence
if and only if ®§‘i (B) is. The latter map is a stable equivalence if and only if

vy (FrEX, V), Frf(X,V @ SY),..) v (FrfE (X, W), Frf (X, W @ S1),...) —

- (Frff X, vuw),Frf(X,(vuw)®sh),..)

is a stable equivalence. This is a map of Segal S'-spectra associated to Segal spaces of the form K €
I'°P  Frf(X,V @ K), hence y is a map of connective spectra. The Stable Whitehead Theorem [31,
Proposition I1.6.30] implies y is a stable equivalence if and only if

Z(@y) : (ZFE (X, V), zFE X,V ® SY),..) vV (ZFrE (X, W), ZFrf (X, W ® §1),...) —

> (ZFfX,vuw),ZEffFX,(vuWw)®Sh),..)
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is a stable equivalence, where Z Frf(X, V) is the reduced free Abelian group of the pointed set
Frf (X, V). Repeating the proof of [15, Theorem 1.2] word for word, Z(y) is stably equivalent to the
map

§ : (zFE(X,V),zFF(X,v ® SY),..) v (ZFE(X, W), ZFE(X,W ® S'),..) —»

- (ZFEX,vuw),zFEX,(VvuWw)®SY),..),

where ZFE(X,V) = colim, ZFE(X, V) with ZFE(X, V) the free Abelian group freely generated
by E-framed correspondences with connected support [14]. As ZFE(X,V UW) = ZFE(X,V) x
ZFE(X,W), the map § equals the stable equivalence of S'-spectra

(zFE(X, V), ZzFE(X,V @ SY),..) v (ZFE(X, W), ZFE(X,W @ SY),...) —

— (ZFE(X,V),zFF(X,V ® SY),..) x (ZFE(X,W),ZFE(X,W @ SY), ...).
This completes the proof of the lemma. O

The Cech model category ModOgec , associated with Nisnevich topology is obtained from Mod©F
by Bousfield localization with respect to all maps 7 : OF(—,U,) - OF(—, X) running over the
set of finite Nisnevich covers. It follows from [36, Corollary 5.10] (see also [5]) that Mod(?f,ech
coincides with the Nisnevich local model category Mod(DfiS, with stable weak equivalences
defined stalkwise.

We say that a spectral category O is Cech excisive if for any finite Nisnevich cover {U; — X} the
induced map 7 : O(—,U,) — O(—,X) is a local stable weak equivalence.

Theorem 6.11. Let k be any field. The commutative spectral category OF is Cech excisive. The Cech
model structure coincides with Nisnevich local model structure on ModOF. This model structure has
all the properties of Theorem 6.2. The homotopy category DOP< (k) of Mod@?ech is closed symmet-
ric monoidal compactly generated triangulated with compact generators being the representables
{OF(—,X) | X € Sm/k}. The monoidal product OF (—,X) A OF(=,Y) in DO (k) is isomorphic
to OF(—,X X Y).

’’’’’ iy.i,) = OF(=,C(U,)) is a schemewise sta-
ble equivalence, and hence the realization is. The proof of [35, Theorem 4.4] shows that the
map OF(—,C(U,)) - OF(—,X) is a level local equivalence. We see that 7 is a local stable weak
equivalence. The rest is now straightforward. O

The homotopy category DOF-¢f (k) plays the same role as the derived category D(Shv?ris(Sm /k))
of cochain complexes of Nisnevich sheaves with transfers. Recall from [34] that Voevodsky’s
category of motives DM®f(k) is the localization of D(Shv"*(Sm/k)) with respect to the family
{Z,(—, X xA)) - 7,.(-,X) | X € Sm/k}. If k is perfect, DM/ (k) is equivalent to the full sub-
category of D(Shv;‘riS(Sm /k)) consisting of chain complexes with homotopy invariant cohomology
sheaves [34]. Likewise, localize Mod(??ech with respect to the maps {OF (—, X x Al) = OF (-, X) |

X € Sm/k}. Denote by DOﬁl’ng(k) its homotopy category.
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Theorem 6.12. Let k be a perfect field. The homotopy category D(Dﬁl’gif(k) is equivalent to the
full triangulated subcategory DE®' (k) of DO (k) consisting of modules with homotopy invari-
ant sheaves of stable homotopy groups. The inclusion DE® (k) — DO (k) has a right adjoint C,
taking a module M € DO (k) to its Suslin complex C,(M).

Moreover, there is a triangulated equivalence of compactly generated triangulated categories
ff i
DE®"(k) ~ SHI; O}

Proof. The proof of the first part is like that of [17, Theorem 3.5]. One also uses here the fact thatif k
is perfect then by [18] (complemented by [4] in characteristic 2 and by [3, A.27] for finite fields) any
Al-invariant quasi-stable radditive framed presheaf of Abelian groups F, the associated Nisnevich
sheaf 7, is strictly Al-invariant.

The equivalence DE®f(k) ~ SHg‘f‘Oi follows from the fact that both categories are compactly
generated by symmetric E-framed motives with the same Hom-sets (as usual we use Lemma 4.1

here). O

We call the category DE®f(k) from the preceding theorem the triangulated category of E-framed
motives. We finish the paper with the following result saying that DE®/(k) recovers the category
of effective E-modules in SH(k).

Corollary 6.13. Let k be a perfect field. There is a triangulated equivalence of compactly generated
triangulated categories

eff ~ eff
DE®(k) ~ Modgf{ . E.

Proof. This follows from the preceding theorem and Corollary 6.8. O
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