Book chapter 540 views 56 downloads
Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras
Springer Proceedings in Mathematics & Statistics, Pages: 103 - 110
Swansea University Author: Tomasz Brzezinski
-
PDF | Accepted Manuscript
Download (240.96KB)
DOI (Published version): 10.1007/978-981-19-4751-3_7
Abstract
It is shown that generalized Rota–Baxter operators introduced in [W. A. Martinez, E. G. Reyes, M. Ronco, Int. J. Geom. Meth. Mod. Phys. 18, 2150176 (2021)] are a special case of Rota–Baxter systems [T. Brzeziński, J. Algebra 460, 1–25 (2016)]. The latter are enriched by homothetisms and then shown t...
Published in: | Springer Proceedings in Mathematics & Statistics |
---|---|
ISBN: | 9789811947506 9789811947513 |
ISSN: | 2194-1009 2194-1017 |
Published: |
Singapore
Springer Nature Singapore
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa62800 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2023-03-06T13:42:44Z |
---|---|
last_indexed |
2023-03-08T04:19:13Z |
id |
cronfa62800 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-03-07T08:47:57.8671817</datestamp><bib-version>v2</bib-version><id>62800</id><entry>2023-03-06</entry><title>Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-03-06</date><deptcode>SMA</deptcode><abstract>It is shown that generalized Rota–Baxter operators introduced in [W. A. Martinez, E. G. Reyes, M. Ronco, Int. J. Geom. Meth. Mod. Phys. 18, 2150176 (2021)] are a special case of Rota–Baxter systems [T. Brzeziński, J. Algebra 460, 1–25 (2016)]. The latter are enriched by homothetisms and then shown to give examples of Dyck m -algebras.</abstract><type>Book chapter</type><journal>Springer Proceedings in Mathematics &amp; Statistics</journal><volume/><journalNumber/><paginationStart>103</paginationStart><paginationEnd>110</paginationEnd><publisher>Springer Nature Singapore</publisher><placeOfPublication>Singapore</placeOfPublication><isbnPrint>9789811947506</isbnPrint><isbnElectronic>9789811947513</isbnElectronic><issnPrint>2194-1009</issnPrint><issnElectronic>2194-1017</issnElectronic><keywords/><publishedDay>30</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-01-30</publishedDate><doi>10.1007/978-981-19-4751-3_7</doi><url>http://dx.doi.org/10.1007/978-981-19-4751-3_7</url><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>National Science Centre, Poland</funders><projectreference>2019/35/B/ST1/01115</projectreference><lastEdited>2023-03-07T08:47:57.8671817</lastEdited><Created>2023-03-06T13:37:45.4854010</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>1</order></author></authors><documents><document><filename>62800__26759__7ee68a3c9fbf4d8e80d15092a38d1562.pdf</filename><originalFilename>62800.pdf</originalFilename><uploaded>2023-03-06T15:14:28.7343461</uploaded><type>Output</type><contentLength>246740</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-03-07T08:47:57.8671817 v2 62800 2023-03-06 Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2023-03-06 SMA It is shown that generalized Rota–Baxter operators introduced in [W. A. Martinez, E. G. Reyes, M. Ronco, Int. J. Geom. Meth. Mod. Phys. 18, 2150176 (2021)] are a special case of Rota–Baxter systems [T. Brzeziński, J. Algebra 460, 1–25 (2016)]. The latter are enriched by homothetisms and then shown to give examples of Dyck m -algebras. Book chapter Springer Proceedings in Mathematics & Statistics 103 110 Springer Nature Singapore Singapore 9789811947506 9789811947513 2194-1009 2194-1017 30 1 2023 2023-01-30 10.1007/978-981-19-4751-3_7 http://dx.doi.org/10.1007/978-981-19-4751-3_7 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University National Science Centre, Poland 2019/35/B/ST1/01115 2023-03-07T08:47:57.8671817 2023-03-06T13:37:45.4854010 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Tomasz Brzezinski 0000-0001-6270-3439 1 62800__26759__7ee68a3c9fbf4d8e80d15092a38d1562.pdf 62800.pdf 2023-03-06T15:14:28.7343461 Output 246740 application/pdf Accepted Manuscript true false eng |
title |
Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras |
spellingShingle |
Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras Tomasz Brzezinski |
title_short |
Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras |
title_full |
Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras |
title_fullStr |
Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras |
title_full_unstemmed |
Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras |
title_sort |
Homothetic Rota–Baxter Systems and Dyck$$^m$$-Algebras |
author_id_str_mv |
30466d840b59627325596fbbb2c82754 |
author_id_fullname_str_mv |
30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski |
author |
Tomasz Brzezinski |
author2 |
Tomasz Brzezinski |
format |
Book chapter |
container_title |
Springer Proceedings in Mathematics & Statistics |
container_start_page |
103 |
publishDate |
2023 |
institution |
Swansea University |
isbn |
9789811947506 9789811947513 |
issn |
2194-1009 2194-1017 |
doi_str_mv |
10.1007/978-981-19-4751-3_7 |
publisher |
Springer Nature Singapore |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://dx.doi.org/10.1007/978-981-19-4751-3_7 |
document_store_str |
1 |
active_str |
0 |
description |
It is shown that generalized Rota–Baxter operators introduced in [W. A. Martinez, E. G. Reyes, M. Ronco, Int. J. Geom. Meth. Mod. Phys. 18, 2150176 (2021)] are a special case of Rota–Baxter systems [T. Brzeziński, J. Algebra 460, 1–25 (2016)]. The latter are enriched by homothetisms and then shown to give examples of Dyck m -algebras. |
published_date |
2023-01-30T04:23:10Z |
_version_ |
1763663927940481024 |
score |
11.037144 |