Journal article 831 views 58 downloads
Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D
Cell Reports Methods, Volume: 3, Issue: 2, Start page: 100398
Swansea University Authors: Claire Barnes , Huw Summers , Paul Rees
-
PDF | Version of Record
Distributed under the terms of a Creative Commons Attribution 4.0 License.
Download (7.51MB)
DOI (Published version): 10.1016/j.crmeth.2023.100398
Abstract
Unlocking and quantifying fundamental biological processes through tissue microscopy requires accurate, in situ segmentation of all cells imaged. Currently, achieving this is complex and requires exogenous fluorescent labels that occupy significant spectral bandwidth, increasing the duration and com...
Published in: | Cell Reports Methods |
---|---|
ISSN: | 2667-2375 |
Published: |
Elsevier BV
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa62581 |
first_indexed |
2023-02-06T10:58:43Z |
---|---|
last_indexed |
2024-11-14T12:21:13Z |
id |
cronfa62581 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-10-18T16:36:15.4575785</datestamp><bib-version>v2</bib-version><id>62581</id><entry>2023-02-06</entry><title>Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D</title><swanseaauthors><author><sid>024232879fc13d5ceac584360af8742c</sid><ORCID>0000-0003-1031-7127</ORCID><firstname>Claire</firstname><surname>Barnes</surname><name>Claire Barnes</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a61c15e220837ebfa52648c143769427</sid><ORCID>0000-0002-0898-5612</ORCID><firstname>Huw</firstname><surname>Summers</surname><name>Huw Summers</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>537a2fe031a796a3bde99679ee8c24f5</sid><ORCID>0000-0002-7715-6914</ORCID><firstname>Paul</firstname><surname>Rees</surname><name>Paul Rees</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-02-06</date><deptcode>EAAS</deptcode><abstract>Unlocking and quantifying fundamental biological processes through tissue microscopy requires accurate, in situ segmentation of all cells imaged. Currently, achieving this is complex and requires exogenous fluorescent labels that occupy significant spectral bandwidth, increasing the duration and complexity of imaging experiments while limiting the number of channels remaining to address the study’s objectives. We demonstrate that the excitation light reflected during routine confocal microscopy contains sufficient information to achieve accurate, label-free cell segmentation in 2D and 3D. This is achieved using a simple convolutional neural network trained to predict the probability that reflected light pixels belong to either nucleus, cytoskeleton, or background classifications. We demonstrate the approach across diverse lymphoid tissues and provide video tutorials demonstrating deployment in Python and MATLAB or via standalone software for Windows.</abstract><type>Journal Article</type><journal>Cell Reports Methods</journal><volume>3</volume><journalNumber>2</journalNumber><paginationStart>100398</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2667-2375</issnElectronic><keywords>label free; cell segmentation; tissue; confocal microscopy; immunofluorescence; single cell; quantitative; 2D; 3D; digital pathology</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-02-01</publishedDate><doi>10.1016/j.crmeth.2023.100398</doi><url>http://dx.doi.org/10.1016/j.crmeth.2023.100398</url><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>External research funder(s) paid the OA fee (includes OA grants disbursed by the Library)</apcterm><funders>EPSRC, BBSRC, MRC, Wellcome Trust
EP/N013506/1, BB/P026818/1, MR/R005699/1, 108045/Z/15/Z</funders><projectreference/><lastEdited>2024-10-18T16:36:15.4575785</lastEdited><Created>2023-02-06T10:53:36.1298275</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Biomedical Engineering</level></path><authors><author><firstname>John W.</firstname><surname>Wills</surname><orcid>0000-0002-4347-5394</orcid><order>1</order></author><author><firstname>Jack</firstname><surname>Robertson</surname><order>2</order></author><author><firstname>Pani</firstname><surname>Tourlomousis</surname><order>3</order></author><author><firstname>Clare M.C.</firstname><surname>Gillis</surname><order>4</order></author><author><firstname>Claire</firstname><surname>Barnes</surname><orcid>0000-0003-1031-7127</orcid><order>5</order></author><author><firstname>Michelle</firstname><surname>Miniter</surname><orcid>0000-0002-8480-2726</orcid><order>6</order></author><author><firstname>Rachel E.</firstname><surname>Hewitt</surname><order>7</order></author><author><firstname>Clare E.</firstname><surname>Bryant</surname><order>8</order></author><author><firstname>Huw</firstname><surname>Summers</surname><orcid>0000-0002-0898-5612</orcid><order>9</order></author><author><firstname>Jonathan J.</firstname><surname>Powell</surname><order>10</order></author><author><firstname>Paul</firstname><surname>Rees</surname><orcid>0000-0002-7715-6914</orcid><order>11</order></author></authors><documents><document><filename>62581__27154__b55af2a7c26d41108f5942c7944ba415.pdf</filename><originalFilename>62581.VOR.pdf</originalFilename><uploaded>2023-04-21T12:37:33.4311033</uploaded><type>Output</type><contentLength>7873243</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Distributed under the terms of a Creative Commons Attribution 4.0 License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-10-18T16:36:15.4575785 v2 62581 2023-02-06 Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D 024232879fc13d5ceac584360af8742c 0000-0003-1031-7127 Claire Barnes Claire Barnes true false a61c15e220837ebfa52648c143769427 0000-0002-0898-5612 Huw Summers Huw Summers true false 537a2fe031a796a3bde99679ee8c24f5 0000-0002-7715-6914 Paul Rees Paul Rees true false 2023-02-06 EAAS Unlocking and quantifying fundamental biological processes through tissue microscopy requires accurate, in situ segmentation of all cells imaged. Currently, achieving this is complex and requires exogenous fluorescent labels that occupy significant spectral bandwidth, increasing the duration and complexity of imaging experiments while limiting the number of channels remaining to address the study’s objectives. We demonstrate that the excitation light reflected during routine confocal microscopy contains sufficient information to achieve accurate, label-free cell segmentation in 2D and 3D. This is achieved using a simple convolutional neural network trained to predict the probability that reflected light pixels belong to either nucleus, cytoskeleton, or background classifications. We demonstrate the approach across diverse lymphoid tissues and provide video tutorials demonstrating deployment in Python and MATLAB or via standalone software for Windows. Journal Article Cell Reports Methods 3 2 100398 Elsevier BV 2667-2375 label free; cell segmentation; tissue; confocal microscopy; immunofluorescence; single cell; quantitative; 2D; 3D; digital pathology 1 2 2023 2023-02-01 10.1016/j.crmeth.2023.100398 http://dx.doi.org/10.1016/j.crmeth.2023.100398 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University External research funder(s) paid the OA fee (includes OA grants disbursed by the Library) EPSRC, BBSRC, MRC, Wellcome Trust EP/N013506/1, BB/P026818/1, MR/R005699/1, 108045/Z/15/Z 2024-10-18T16:36:15.4575785 2023-02-06T10:53:36.1298275 Faculty of Science and Engineering School of Engineering and Applied Sciences - Biomedical Engineering John W. Wills 0000-0002-4347-5394 1 Jack Robertson 2 Pani Tourlomousis 3 Clare M.C. Gillis 4 Claire Barnes 0000-0003-1031-7127 5 Michelle Miniter 0000-0002-8480-2726 6 Rachel E. Hewitt 7 Clare E. Bryant 8 Huw Summers 0000-0002-0898-5612 9 Jonathan J. Powell 10 Paul Rees 0000-0002-7715-6914 11 62581__27154__b55af2a7c26d41108f5942c7944ba415.pdf 62581.VOR.pdf 2023-04-21T12:37:33.4311033 Output 7873243 application/pdf Version of Record true Distributed under the terms of a Creative Commons Attribution 4.0 License. true eng https://creativecommons.org/licenses/by/4.0/ |
title |
Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D |
spellingShingle |
Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D Claire Barnes Huw Summers Paul Rees |
title_short |
Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D |
title_full |
Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D |
title_fullStr |
Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D |
title_full_unstemmed |
Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D |
title_sort |
Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D |
author_id_str_mv |
024232879fc13d5ceac584360af8742c a61c15e220837ebfa52648c143769427 537a2fe031a796a3bde99679ee8c24f5 |
author_id_fullname_str_mv |
024232879fc13d5ceac584360af8742c_***_Claire Barnes a61c15e220837ebfa52648c143769427_***_Huw Summers 537a2fe031a796a3bde99679ee8c24f5_***_Paul Rees |
author |
Claire Barnes Huw Summers Paul Rees |
author2 |
John W. Wills Jack Robertson Pani Tourlomousis Clare M.C. Gillis Claire Barnes Michelle Miniter Rachel E. Hewitt Clare E. Bryant Huw Summers Jonathan J. Powell Paul Rees |
format |
Journal article |
container_title |
Cell Reports Methods |
container_volume |
3 |
container_issue |
2 |
container_start_page |
100398 |
publishDate |
2023 |
institution |
Swansea University |
issn |
2667-2375 |
doi_str_mv |
10.1016/j.crmeth.2023.100398 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Biomedical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Biomedical Engineering |
url |
http://dx.doi.org/10.1016/j.crmeth.2023.100398 |
document_store_str |
1 |
active_str |
0 |
description |
Unlocking and quantifying fundamental biological processes through tissue microscopy requires accurate, in situ segmentation of all cells imaged. Currently, achieving this is complex and requires exogenous fluorescent labels that occupy significant spectral bandwidth, increasing the duration and complexity of imaging experiments while limiting the number of channels remaining to address the study’s objectives. We demonstrate that the excitation light reflected during routine confocal microscopy contains sufficient information to achieve accurate, label-free cell segmentation in 2D and 3D. This is achieved using a simple convolutional neural network trained to predict the probability that reflected light pixels belong to either nucleus, cytoskeleton, or background classifications. We demonstrate the approach across diverse lymphoid tissues and provide video tutorials demonstrating deployment in Python and MATLAB or via standalone software for Windows. |
published_date |
2023-02-01T20:19:33Z |
_version_ |
1821347543975460864 |
score |
11.04748 |