No Cover Image

Journal article 676 views 118 downloads

Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation

Miguel Angel Moreno-Mateos Orcid Logo, Mokarram Hossain Orcid Logo, Paul Steinmann Orcid Logo, Daniel Garcia-Gonzalez Orcid Logo

Journal of the Mechanics and Physics of Solids, Volume: 173, Start page: 105232

Swansea University Author: Mokarram Hossain Orcid Logo

  • 62553.pdf

    PDF | Version of Record

    This is an open access article under the CC BY-NC-ND license

    Download (15.77MB)

Abstract

Pre-existing flaws in highly stretchable elastomers trigger fracture under large deformations. For multifunctional materials, fracture mechanics may be influenced by additional physical phenomena. This work studies the implications of hard magnetics on the fracture behaviour of ultra-soft magnetorhe...

Full description

Published in: Journal of the Mechanics and Physics of Solids
ISSN: 0022-5096
Published: Elsevier BV 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa62553
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2023-02-03T15:38:41Z
last_indexed 2023-03-01T04:18:24Z
id cronfa62553
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-02-28T17:04:18.8233124</datestamp><bib-version>v2</bib-version><id>62553</id><entry>2023-02-03</entry><title>Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation</title><swanseaauthors><author><sid>140f4aa5c5ec18ec173c8542a7fddafd</sid><ORCID>0000-0002-4616-1104</ORCID><firstname>Mokarram</firstname><surname>Hossain</surname><name>Mokarram Hossain</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-02-03</date><deptcode>GENG</deptcode><abstract>Pre-existing flaws in highly stretchable elastomers trigger fracture under large deformations. For multifunctional materials, fracture mechanics may be influenced by additional physical phenomena. This work studies the implications of hard magnetics on the fracture behaviour of ultra-soft magnetorheological elastomers (MREs). We experimentally demonstrate that MREs with remanent magnetisation have up to a 50 % higher fracture toughness than non pre-magnetised samples. Moreover, we report crack closure due to the magnetic field as a mechanism that delays the opening of cracks in pre-magnetised MREs. To overcome experimental limitations and provide further understanding, a phase-field model for the fracture of MREs is conceptualised. The numerical model incorporates magneto-mechanical coupling to demonstrate that the stress concentration at the crack tip is smaller when the MRE is pre-magnetised. Overall, this work unveils intriguing applications for functional actuators, with better fracture behaviour and potential better performance under cyclic loading.</abstract><type>Journal Article</type><journal>Journal of the Mechanics and Physics of Solids</journal><volume>173</volume><journalNumber/><paginationStart>105232</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-5096</issnPrint><issnElectronic/><keywords>Hard magnetics, Ultra-soft magnetorheological elastomers, Multifunctional materials, Experimental mechanics, Phase-field modelling, Soft fracture</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-04-01</publishedDate><doi>10.1016/j.jmps.2023.105232</doi><url/><notes/><college>COLLEGE NANME</college><department>General Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>GENG</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>ERC (Grant-No. 947723, project: 4D-BIOMAP); Horizon Europe programme (Grant-No. 101052785, project: SoftFrac)</funders><projectreference/><lastEdited>2023-02-28T17:04:18.8233124</lastEdited><Created>2023-02-03T15:33:23.3314563</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Miguel Angel</firstname><surname>Moreno-Mateos</surname><orcid>0000-0002-3476-2180</orcid><order>1</order></author><author><firstname>Mokarram</firstname><surname>Hossain</surname><orcid>0000-0002-4616-1104</orcid><order>2</order></author><author><firstname>Paul</firstname><surname>Steinmann</surname><orcid>0000-0003-1490-947x</orcid><order>3</order></author><author><firstname>Daniel</firstname><surname>Garcia-Gonzalez</surname><orcid>0000-0003-4692-3508</orcid><order>4</order></author></authors><documents><document><filename>62553__26467__1b82ac757a504ef0927b562f95d9fd8f.pdf</filename><originalFilename>62553.pdf</originalFilename><uploaded>2023-02-03T15:38:32.9518978</uploaded><type>Output</type><contentLength>16540466</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This is an open access article under the CC BY-NC-ND license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2023-02-28T17:04:18.8233124 v2 62553 2023-02-03 Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation 140f4aa5c5ec18ec173c8542a7fddafd 0000-0002-4616-1104 Mokarram Hossain Mokarram Hossain true false 2023-02-03 GENG Pre-existing flaws in highly stretchable elastomers trigger fracture under large deformations. For multifunctional materials, fracture mechanics may be influenced by additional physical phenomena. This work studies the implications of hard magnetics on the fracture behaviour of ultra-soft magnetorheological elastomers (MREs). We experimentally demonstrate that MREs with remanent magnetisation have up to a 50 % higher fracture toughness than non pre-magnetised samples. Moreover, we report crack closure due to the magnetic field as a mechanism that delays the opening of cracks in pre-magnetised MREs. To overcome experimental limitations and provide further understanding, a phase-field model for the fracture of MREs is conceptualised. The numerical model incorporates magneto-mechanical coupling to demonstrate that the stress concentration at the crack tip is smaller when the MRE is pre-magnetised. Overall, this work unveils intriguing applications for functional actuators, with better fracture behaviour and potential better performance under cyclic loading. Journal Article Journal of the Mechanics and Physics of Solids 173 105232 Elsevier BV 0022-5096 Hard magnetics, Ultra-soft magnetorheological elastomers, Multifunctional materials, Experimental mechanics, Phase-field modelling, Soft fracture 1 4 2023 2023-04-01 10.1016/j.jmps.2023.105232 COLLEGE NANME General Engineering COLLEGE CODE GENG Swansea University ERC (Grant-No. 947723, project: 4D-BIOMAP); Horizon Europe programme (Grant-No. 101052785, project: SoftFrac) 2023-02-28T17:04:18.8233124 2023-02-03T15:33:23.3314563 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Miguel Angel Moreno-Mateos 0000-0002-3476-2180 1 Mokarram Hossain 0000-0002-4616-1104 2 Paul Steinmann 0000-0003-1490-947x 3 Daniel Garcia-Gonzalez 0000-0003-4692-3508 4 62553__26467__1b82ac757a504ef0927b562f95d9fd8f.pdf 62553.pdf 2023-02-03T15:38:32.9518978 Output 16540466 application/pdf Version of Record true This is an open access article under the CC BY-NC-ND license true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation
spellingShingle Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation
Mokarram Hossain
title_short Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation
title_full Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation
title_fullStr Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation
title_full_unstemmed Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation
title_sort Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation
author_id_str_mv 140f4aa5c5ec18ec173c8542a7fddafd
author_id_fullname_str_mv 140f4aa5c5ec18ec173c8542a7fddafd_***_Mokarram Hossain
author Mokarram Hossain
author2 Miguel Angel Moreno-Mateos
Mokarram Hossain
Paul Steinmann
Daniel Garcia-Gonzalez
format Journal article
container_title Journal of the Mechanics and Physics of Solids
container_volume 173
container_start_page 105232
publishDate 2023
institution Swansea University
issn 0022-5096
doi_str_mv 10.1016/j.jmps.2023.105232
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description Pre-existing flaws in highly stretchable elastomers trigger fracture under large deformations. For multifunctional materials, fracture mechanics may be influenced by additional physical phenomena. This work studies the implications of hard magnetics on the fracture behaviour of ultra-soft magnetorheological elastomers (MREs). We experimentally demonstrate that MREs with remanent magnetisation have up to a 50 % higher fracture toughness than non pre-magnetised samples. Moreover, we report crack closure due to the magnetic field as a mechanism that delays the opening of cracks in pre-magnetised MREs. To overcome experimental limitations and provide further understanding, a phase-field model for the fracture of MREs is conceptualised. The numerical model incorporates magneto-mechanical coupling to demonstrate that the stress concentration at the crack tip is smaller when the MRE is pre-magnetised. Overall, this work unveils intriguing applications for functional actuators, with better fracture behaviour and potential better performance under cyclic loading.
published_date 2023-04-01T04:22:15Z
_version_ 1763754467278192640
score 11.037056