Journal article 676 views 118 downloads
Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation
Journal of the Mechanics and Physics of Solids, Volume: 173, Start page: 105232
Swansea University Author: Mokarram Hossain
-
PDF | Version of Record
This is an open access article under the CC BY-NC-ND license
Download (15.77MB)
DOI (Published version): 10.1016/j.jmps.2023.105232
Abstract
Pre-existing flaws in highly stretchable elastomers trigger fracture under large deformations. For multifunctional materials, fracture mechanics may be influenced by additional physical phenomena. This work studies the implications of hard magnetics on the fracture behaviour of ultra-soft magnetorhe...
Published in: | Journal of the Mechanics and Physics of Solids |
---|---|
ISSN: | 0022-5096 |
Published: |
Elsevier BV
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa62553 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2023-02-03T15:38:41Z |
---|---|
last_indexed |
2023-03-01T04:18:24Z |
id |
cronfa62553 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-02-28T17:04:18.8233124</datestamp><bib-version>v2</bib-version><id>62553</id><entry>2023-02-03</entry><title>Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation</title><swanseaauthors><author><sid>140f4aa5c5ec18ec173c8542a7fddafd</sid><ORCID>0000-0002-4616-1104</ORCID><firstname>Mokarram</firstname><surname>Hossain</surname><name>Mokarram Hossain</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2023-02-03</date><deptcode>GENG</deptcode><abstract>Pre-existing flaws in highly stretchable elastomers trigger fracture under large deformations. For multifunctional materials, fracture mechanics may be influenced by additional physical phenomena. This work studies the implications of hard magnetics on the fracture behaviour of ultra-soft magnetorheological elastomers (MREs). We experimentally demonstrate that MREs with remanent magnetisation have up to a 50 % higher fracture toughness than non pre-magnetised samples. Moreover, we report crack closure due to the magnetic field as a mechanism that delays the opening of cracks in pre-magnetised MREs. To overcome experimental limitations and provide further understanding, a phase-field model for the fracture of MREs is conceptualised. The numerical model incorporates magneto-mechanical coupling to demonstrate that the stress concentration at the crack tip is smaller when the MRE is pre-magnetised. Overall, this work unveils intriguing applications for functional actuators, with better fracture behaviour and potential better performance under cyclic loading.</abstract><type>Journal Article</type><journal>Journal of the Mechanics and Physics of Solids</journal><volume>173</volume><journalNumber/><paginationStart>105232</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-5096</issnPrint><issnElectronic/><keywords>Hard magnetics, Ultra-soft magnetorheological elastomers, Multifunctional materials, Experimental mechanics, Phase-field modelling, Soft fracture</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-04-01</publishedDate><doi>10.1016/j.jmps.2023.105232</doi><url/><notes/><college>COLLEGE NANME</college><department>General Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>GENG</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>ERC (Grant-No. 947723, project: 4D-BIOMAP); Horizon Europe programme (Grant-No. 101052785, project: SoftFrac)</funders><projectreference/><lastEdited>2023-02-28T17:04:18.8233124</lastEdited><Created>2023-02-03T15:33:23.3314563</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Miguel Angel</firstname><surname>Moreno-Mateos</surname><orcid>0000-0002-3476-2180</orcid><order>1</order></author><author><firstname>Mokarram</firstname><surname>Hossain</surname><orcid>0000-0002-4616-1104</orcid><order>2</order></author><author><firstname>Paul</firstname><surname>Steinmann</surname><orcid>0000-0003-1490-947x</orcid><order>3</order></author><author><firstname>Daniel</firstname><surname>Garcia-Gonzalez</surname><orcid>0000-0003-4692-3508</orcid><order>4</order></author></authors><documents><document><filename>62553__26467__1b82ac757a504ef0927b562f95d9fd8f.pdf</filename><originalFilename>62553.pdf</originalFilename><uploaded>2023-02-03T15:38:32.9518978</uploaded><type>Output</type><contentLength>16540466</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This is an open access article under the CC BY-NC-ND license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-02-28T17:04:18.8233124 v2 62553 2023-02-03 Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation 140f4aa5c5ec18ec173c8542a7fddafd 0000-0002-4616-1104 Mokarram Hossain Mokarram Hossain true false 2023-02-03 GENG Pre-existing flaws in highly stretchable elastomers trigger fracture under large deformations. For multifunctional materials, fracture mechanics may be influenced by additional physical phenomena. This work studies the implications of hard magnetics on the fracture behaviour of ultra-soft magnetorheological elastomers (MREs). We experimentally demonstrate that MREs with remanent magnetisation have up to a 50 % higher fracture toughness than non pre-magnetised samples. Moreover, we report crack closure due to the magnetic field as a mechanism that delays the opening of cracks in pre-magnetised MREs. To overcome experimental limitations and provide further understanding, a phase-field model for the fracture of MREs is conceptualised. The numerical model incorporates magneto-mechanical coupling to demonstrate that the stress concentration at the crack tip is smaller when the MRE is pre-magnetised. Overall, this work unveils intriguing applications for functional actuators, with better fracture behaviour and potential better performance under cyclic loading. Journal Article Journal of the Mechanics and Physics of Solids 173 105232 Elsevier BV 0022-5096 Hard magnetics, Ultra-soft magnetorheological elastomers, Multifunctional materials, Experimental mechanics, Phase-field modelling, Soft fracture 1 4 2023 2023-04-01 10.1016/j.jmps.2023.105232 COLLEGE NANME General Engineering COLLEGE CODE GENG Swansea University ERC (Grant-No. 947723, project: 4D-BIOMAP); Horizon Europe programme (Grant-No. 101052785, project: SoftFrac) 2023-02-28T17:04:18.8233124 2023-02-03T15:33:23.3314563 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Miguel Angel Moreno-Mateos 0000-0002-3476-2180 1 Mokarram Hossain 0000-0002-4616-1104 2 Paul Steinmann 0000-0003-1490-947x 3 Daniel Garcia-Gonzalez 0000-0003-4692-3508 4 62553__26467__1b82ac757a504ef0927b562f95d9fd8f.pdf 62553.pdf 2023-02-03T15:38:32.9518978 Output 16540466 application/pdf Version of Record true This is an open access article under the CC BY-NC-ND license true eng https://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation |
spellingShingle |
Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation Mokarram Hossain |
title_short |
Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation |
title_full |
Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation |
title_fullStr |
Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation |
title_full_unstemmed |
Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation |
title_sort |
Hard magnetics in ultra-soft magnetorheological elastomers enhance fracture toughness and delay crack propagation |
author_id_str_mv |
140f4aa5c5ec18ec173c8542a7fddafd |
author_id_fullname_str_mv |
140f4aa5c5ec18ec173c8542a7fddafd_***_Mokarram Hossain |
author |
Mokarram Hossain |
author2 |
Miguel Angel Moreno-Mateos Mokarram Hossain Paul Steinmann Daniel Garcia-Gonzalez |
format |
Journal article |
container_title |
Journal of the Mechanics and Physics of Solids |
container_volume |
173 |
container_start_page |
105232 |
publishDate |
2023 |
institution |
Swansea University |
issn |
0022-5096 |
doi_str_mv |
10.1016/j.jmps.2023.105232 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
Pre-existing flaws in highly stretchable elastomers trigger fracture under large deformations. For multifunctional materials, fracture mechanics may be influenced by additional physical phenomena. This work studies the implications of hard magnetics on the fracture behaviour of ultra-soft magnetorheological elastomers (MREs). We experimentally demonstrate that MREs with remanent magnetisation have up to a 50 % higher fracture toughness than non pre-magnetised samples. Moreover, we report crack closure due to the magnetic field as a mechanism that delays the opening of cracks in pre-magnetised MREs. To overcome experimental limitations and provide further understanding, a phase-field model for the fracture of MREs is conceptualised. The numerical model incorporates magneto-mechanical coupling to demonstrate that the stress concentration at the crack tip is smaller when the MRE is pre-magnetised. Overall, this work unveils intriguing applications for functional actuators, with better fracture behaviour and potential better performance under cyclic loading. |
published_date |
2023-04-01T04:22:15Z |
_version_ |
1763754467278192640 |
score |
11.037056 |