No Cover Image

E-Thesis 247 views 80 downloads

Testing Methodologies for Power Electronic Devices With focus on MOSFETs and IGBTs / MENGSTEAB TESFAMARIAM

Swansea University Author: MENGSTEAB TESFAMARIAM

  • Tesfamariam_Mengsteab_MSc_Research_Thesis_Final_Redacted_Cronfa.pdf

    PDF | E-Thesis – open access

    Copyright: The author, Mengsteab Tesfamariam, 2022.

    Download (12.25MB)

Abstract

Metal Oxide Semiconductor Field Effect Transistor (MOSF ET s) and Insu-lated Gate Bipolar Transistor (IGBT s); both are the state-of-the-art semiconductor switching devices.In this study an in-depth study of Metal Oxide Semiconductor (MOS) physics, cell structure and electrical characterization of MO...

Full description

Published: Swansea 2022
Institution: Swansea University
Degree level: Master of Research
Degree name: MSc by Research
Supervisor: Jennings, Mike
URI: https://cronfa.swan.ac.uk/Record/cronfa62148
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Metal Oxide Semiconductor Field Effect Transistor (MOSF ET s) and Insu-lated Gate Bipolar Transistor (IGBT s); both are the state-of-the-art semiconductor switching devices.In this study an in-depth study of Metal Oxide Semiconductor (MOS) physics, cell structure and electrical characterization of MOSFETs and IGBTs has been con-ducted. The aim is to achieve a further improvement on the reliability and rugged-ness of these power electronic devices using findings of the research. These power devices have an extensive industrial and domestic applications, they are the building blocks of nearly all types of power electronic circuits, control systems and advanced digital data storages, laptop and phone chargers, motor drives in electric vehicle, PV converters, Wind converters, industrial heaters. Power electronic monitoring systems including DC to DC converters, DC to AC inverters, AC to DC rectifiers and AC to AC converter.Silvaco simulation and MATLAB modeling enabled the research to gain a vivid understanding of device operation MOS physics and all relevant electrical charac-teristics. The practical experiment side of the research includes high power semi-conductor devices characterization; testing of fabricated discrete devices comprising:(200V, 40A Silicon MOSFET; 1.2KV, 19A Silicon Carbide MOSFET; 600V, 20A and 40A Silicon IGBT; 1.2KV, 25A Silicon IGBT). Consequently, the research work gained an insight to the semiconductor switching latest technologies that are useful for the optimization consideration of power electronic devices. Observations from published journals enabled to see the existing relevant research gaps and works car-ried out by other scientists around this field area. Silicon is the working material for this master’s by research thesis. Moreover, this paper also looks into the great benefits of using silicon-carbide as a material for the next generation technological innovations.Therefore, this research contributes towards device optimization in the following way:Firstly, at a single cell design level. Shielded trench gate geometry architecture outperforms planar gate structure. Secondly, fabricating using a Wide-band-gap material (WBG) enhances device performance greatly.
Keywords: MOSFETs; IGBTs; MOS Physics; MATLAB modelling; Silvaco simulation; Device transfer, output and breakdown voltage Characterization
College: Faculty of Science and Engineering