No Cover Image

Journal article 381 views 120 downloads

Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells

Bowei Li Orcid Logo, Jun Deng, Joel A. Smith, Pietro Caprioglio, Kangyu Ji, Deying Luo, James McGettrick Orcid Logo, K. D. G. Imalka Jayawardena, Rachel C. Kilbride, Aobo Ren, Steven Hinder, Jinxin Bi, Thomas Webb, Igor Marko, Xueping Liu, Yuren Xiang, Josh Reding, Hui Li, Shixuan Du, David G. Lidzey, Samuel D. Stranks, Trystan Watson Orcid Logo, Stephen Sweeney, Henry J. Snaith, S. Ravi P. Silva, Wei Zhang Orcid Logo

Advanced Energy Materials, Volume: 12, Issue: 48, Start page: 2202868

Swansea University Authors: James McGettrick Orcid Logo, Trystan Watson Orcid Logo

  • 61965.pdf

    PDF | Version of Record

    © 2022 The Authors.This is an open access article under the terms of the Creative Commons Attribution License

    Download (3.73MB)

Check full text

DOI (Published version): 10.1002/aenm.202202868

Abstract

Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar ce...

Full description

Published in: Advanced Energy Materials
ISSN: 1614-6832 1614-6840
Published: Wiley 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61965
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-11-21T10:14:15Z
last_indexed 2023-01-13T19:23:06Z
id cronfa61965
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-12-28T15:57:16.2138337</datestamp><bib-version>v2</bib-version><id>61965</id><entry>2022-11-21</entry><title>Suppressing Interfacial Recombination with a Strong&#x2010;Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells</title><swanseaauthors><author><sid>bdbacc591e2de05180e0fd3cc13fa480</sid><ORCID>0000-0002-7719-2958</ORCID><firstname>James</firstname><surname>McGettrick</surname><name>James McGettrick</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-11-21</date><deptcode>MTLS</deptcode><abstract>Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar cells (IPSCs). Two organic ammonium salts are investigated, consisting of 4-hydroxyphenethylammonium iodide and 2-thiopheneethylammonium iodide (2-TEAI). Without thermal annealing, these two modulators can recover the photoluminescence quantum yield of the neat perovskite film in contact with fullerene electron transport layer (ETL). Compared to the hydroxyl-functionalized phenethylammonium moiety, the thienylammonium facilitates the formation of a quasi-2D structure onto the perovskite. Density functional theory and quasi-Fermi level splitting calculations reveal that the 2-TEAI has a stronger interaction with the perovskite surface, contributing to more suppressed non-radiative recombination at the perovskite/ETL interface and improved open-circuit voltage (VOC) of the fabricated IPSCs. As a result, the VOC increases from 1.11 to 1.20 V (based on a perovskite bandgap of 1.63 eV), yielding a power conversion efficiency (PCE) from &#x2248;20% to 21.9% (stabilized PCE of 21.3%, the highest reported PCEs for IPSCs employing poly[N,N&#x2032;&#x2032;-bis(4-butylphenyl)-N,N&#x2032;&#x2032;-bis(phenyl)benzidine] as the hole transport layer, alongside the enhanced operational and shelf-life stability for unencapsulated devices.</abstract><type>Journal Article</type><journal>Advanced Energy Materials</journal><volume>12</volume><journalNumber>48</journalNumber><paginationStart>2202868</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1614-6832</issnPrint><issnElectronic>1614-6840</issnElectronic><keywords>inverted perovskite solar cells; molecular design, ligands; non-radiative recombination; surface manipulation</keywords><publishedDay>22</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-12-22</publishedDate><doi>10.1002/aenm.202202868</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC. Grant Number: EP/V027131/1 Newton Advanced Fellowship. Grant Number: 192097 China Scholarship Council. Grant Numbers: 201706020158, 760949 Equal Opportunities Foundation Hong Kong Fujian Key Laboratory of Photoelectric Functional Materials. Grant Number: FJPFM-201902 University of Surrey DCSA3 scholarship EPSRC SPECIFIC IKC. Grant Number: EP/N020863/1 UK EPSRC. Grant Number: EP/S009213/1 Royal Society Engineering and Physical Sciences Research Council. Grant Numbers: EP/R023980/1, EP/V027131/1 European Research Council European Union's Horizon 2020. Grant Number: 756962 Royal Society Tata Group. Grant Number: UF150033 State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding. Grant Number: 201901 Key Technologies Research and Development Program. Grant Number: 2019YFB1503500 European Commission H2020 CORNET program. Grant Number: 760949 Chinese Government Scholarship. Grant Number: 201808370197</funders><projectreference/><lastEdited>2022-12-28T15:57:16.2138337</lastEdited><Created>2022-11-21T10:09:31.1828890</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Bowei</firstname><surname>Li</surname><orcid>0000-0002-8647-4068</orcid><order>1</order></author><author><firstname>Jun</firstname><surname>Deng</surname><order>2</order></author><author><firstname>Joel A.</firstname><surname>Smith</surname><order>3</order></author><author><firstname>Pietro</firstname><surname>Caprioglio</surname><order>4</order></author><author><firstname>Kangyu</firstname><surname>Ji</surname><order>5</order></author><author><firstname>Deying</firstname><surname>Luo</surname><order>6</order></author><author><firstname>James</firstname><surname>McGettrick</surname><orcid>0000-0002-7719-2958</orcid><order>7</order></author><author><firstname>K. D. G. Imalka</firstname><surname>Jayawardena</surname><order>8</order></author><author><firstname>Rachel C.</firstname><surname>Kilbride</surname><order>9</order></author><author><firstname>Aobo</firstname><surname>Ren</surname><order>10</order></author><author><firstname>Steven</firstname><surname>Hinder</surname><order>11</order></author><author><firstname>Jinxin</firstname><surname>Bi</surname><order>12</order></author><author><firstname>Thomas</firstname><surname>Webb</surname><order>13</order></author><author><firstname>Igor</firstname><surname>Marko</surname><order>14</order></author><author><firstname>Xueping</firstname><surname>Liu</surname><order>15</order></author><author><firstname>Yuren</firstname><surname>Xiang</surname><order>16</order></author><author><firstname>Josh</firstname><surname>Reding</surname><order>17</order></author><author><firstname>Hui</firstname><surname>Li</surname><order>18</order></author><author><firstname>Shixuan</firstname><surname>Du</surname><order>19</order></author><author><firstname>David G.</firstname><surname>Lidzey</surname><order>20</order></author><author><firstname>Samuel D.</firstname><surname>Stranks</surname><order>21</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>22</order></author><author><firstname>Stephen</firstname><surname>Sweeney</surname><order>23</order></author><author><firstname>Henry J.</firstname><surname>Snaith</surname><order>24</order></author><author><firstname>S. Ravi P.</firstname><surname>Silva</surname><order>25</order></author><author><firstname>Wei</firstname><surname>Zhang</surname><orcid>0000-0002-2678-8372</orcid><order>26</order></author></authors><documents><document><filename>61965__25849__3baf22a7bd93412a8c01b6d30d7afdbb.pdf</filename><originalFilename>61965.pdf</originalFilename><uploaded>2022-11-21T10:13:08.0327278</uploaded><type>Output</type><contentLength>3914540</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>&#xA9; 2022 The Authors.This is an open access article under the terms of the Creative Commons Attribution License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-12-28T15:57:16.2138337 v2 61965 2022-11-21 Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells bdbacc591e2de05180e0fd3cc13fa480 0000-0002-7719-2958 James McGettrick James McGettrick true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 2022-11-21 MTLS Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar cells (IPSCs). Two organic ammonium salts are investigated, consisting of 4-hydroxyphenethylammonium iodide and 2-thiopheneethylammonium iodide (2-TEAI). Without thermal annealing, these two modulators can recover the photoluminescence quantum yield of the neat perovskite film in contact with fullerene electron transport layer (ETL). Compared to the hydroxyl-functionalized phenethylammonium moiety, the thienylammonium facilitates the formation of a quasi-2D structure onto the perovskite. Density functional theory and quasi-Fermi level splitting calculations reveal that the 2-TEAI has a stronger interaction with the perovskite surface, contributing to more suppressed non-radiative recombination at the perovskite/ETL interface and improved open-circuit voltage (VOC) of the fabricated IPSCs. As a result, the VOC increases from 1.11 to 1.20 V (based on a perovskite bandgap of 1.63 eV), yielding a power conversion efficiency (PCE) from ≈20% to 21.9% (stabilized PCE of 21.3%, the highest reported PCEs for IPSCs employing poly[N,N′′-bis(4-butylphenyl)-N,N′′-bis(phenyl)benzidine] as the hole transport layer, alongside the enhanced operational and shelf-life stability for unencapsulated devices. Journal Article Advanced Energy Materials 12 48 2202868 Wiley 1614-6832 1614-6840 inverted perovskite solar cells; molecular design, ligands; non-radiative recombination; surface manipulation 22 12 2022 2022-12-22 10.1002/aenm.202202868 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University EPSRC. Grant Number: EP/V027131/1 Newton Advanced Fellowship. Grant Number: 192097 China Scholarship Council. Grant Numbers: 201706020158, 760949 Equal Opportunities Foundation Hong Kong Fujian Key Laboratory of Photoelectric Functional Materials. Grant Number: FJPFM-201902 University of Surrey DCSA3 scholarship EPSRC SPECIFIC IKC. Grant Number: EP/N020863/1 UK EPSRC. Grant Number: EP/S009213/1 Royal Society Engineering and Physical Sciences Research Council. Grant Numbers: EP/R023980/1, EP/V027131/1 European Research Council European Union's Horizon 2020. Grant Number: 756962 Royal Society Tata Group. Grant Number: UF150033 State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding. Grant Number: 201901 Key Technologies Research and Development Program. Grant Number: 2019YFB1503500 European Commission H2020 CORNET program. Grant Number: 760949 Chinese Government Scholarship. Grant Number: 201808370197 2022-12-28T15:57:16.2138337 2022-11-21T10:09:31.1828890 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Bowei Li 0000-0002-8647-4068 1 Jun Deng 2 Joel A. Smith 3 Pietro Caprioglio 4 Kangyu Ji 5 Deying Luo 6 James McGettrick 0000-0002-7719-2958 7 K. D. G. Imalka Jayawardena 8 Rachel C. Kilbride 9 Aobo Ren 10 Steven Hinder 11 Jinxin Bi 12 Thomas Webb 13 Igor Marko 14 Xueping Liu 15 Yuren Xiang 16 Josh Reding 17 Hui Li 18 Shixuan Du 19 David G. Lidzey 20 Samuel D. Stranks 21 Trystan Watson 0000-0002-8015-1436 22 Stephen Sweeney 23 Henry J. Snaith 24 S. Ravi P. Silva 25 Wei Zhang 0000-0002-2678-8372 26 61965__25849__3baf22a7bd93412a8c01b6d30d7afdbb.pdf 61965.pdf 2022-11-21T10:13:08.0327278 Output 3914540 application/pdf Version of Record true © 2022 The Authors.This is an open access article under the terms of the Creative Commons Attribution License true eng http://creativecommons.org/licenses/by/4.0/
title Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells
spellingShingle Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells
James McGettrick
Trystan Watson
title_short Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells
title_full Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells
title_fullStr Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells
title_full_unstemmed Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells
title_sort Suppressing Interfacial Recombination with a Strong‐Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells
author_id_str_mv bdbacc591e2de05180e0fd3cc13fa480
a210327b52472cfe8df9b8108d661457
author_id_fullname_str_mv bdbacc591e2de05180e0fd3cc13fa480_***_James McGettrick
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
author James McGettrick
Trystan Watson
author2 Bowei Li
Jun Deng
Joel A. Smith
Pietro Caprioglio
Kangyu Ji
Deying Luo
James McGettrick
K. D. G. Imalka Jayawardena
Rachel C. Kilbride
Aobo Ren
Steven Hinder
Jinxin Bi
Thomas Webb
Igor Marko
Xueping Liu
Yuren Xiang
Josh Reding
Hui Li
Shixuan Du
David G. Lidzey
Samuel D. Stranks
Trystan Watson
Stephen Sweeney
Henry J. Snaith
S. Ravi P. Silva
Wei Zhang
format Journal article
container_title Advanced Energy Materials
container_volume 12
container_issue 48
container_start_page 2202868
publishDate 2022
institution Swansea University
issn 1614-6832
1614-6840
doi_str_mv 10.1002/aenm.202202868
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar cells (IPSCs). Two organic ammonium salts are investigated, consisting of 4-hydroxyphenethylammonium iodide and 2-thiopheneethylammonium iodide (2-TEAI). Without thermal annealing, these two modulators can recover the photoluminescence quantum yield of the neat perovskite film in contact with fullerene electron transport layer (ETL). Compared to the hydroxyl-functionalized phenethylammonium moiety, the thienylammonium facilitates the formation of a quasi-2D structure onto the perovskite. Density functional theory and quasi-Fermi level splitting calculations reveal that the 2-TEAI has a stronger interaction with the perovskite surface, contributing to more suppressed non-radiative recombination at the perovskite/ETL interface and improved open-circuit voltage (VOC) of the fabricated IPSCs. As a result, the VOC increases from 1.11 to 1.20 V (based on a perovskite bandgap of 1.63 eV), yielding a power conversion efficiency (PCE) from ≈20% to 21.9% (stabilized PCE of 21.3%, the highest reported PCEs for IPSCs employing poly[N,N′′-bis(4-butylphenyl)-N,N′′-bis(phenyl)benzidine] as the hole transport layer, alongside the enhanced operational and shelf-life stability for unencapsulated devices.
published_date 2022-12-22T04:21:13Z
_version_ 1763754401494728704
score 11.01306