No Cover Image

Journal article 544 views 126 downloads

Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study

Mehrdad A Mizani, Ashkan Dashtban, Laura Pasea, Alvina G Lai, Johan Thygesen, Chris Tomlinson Orcid Logo, Alex Handy, Jil B Mamza, Tamsin Morris, Sara Khalid, Francesco Zaccardi, Mary Joan Macleod, Fatemeh Torabi Orcid Logo, Dexter Canoy, Ashley Akbari Orcid Logo, Colin Berry, Thomas Bolton, John Nolan, Kamlesh Khunti, Spiros Denaxas, Harry Hemingway, Cathie Sudlow, Amitava Banerjee Orcid Logo, (on behalf of the CVD-COVID-UK Consortium)

Journal of the Royal Society of Medicine, Volume: 116, Issue: 1, Start page: 014107682211318

Swansea University Authors: Fatemeh Torabi Orcid Logo, Ashley Akbari Orcid Logo

Published in: Journal of the Royal Society of Medicine
ISSN: 0141-0768 1758-1095
Published: SAGE Publications 2022
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61933
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2022-11-23T16:31:00Z
last_indexed 2023-01-21T04:11:51Z
id cronfa61933
recordtype SURis
fullrecord <?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>61933</id><entry>2022-11-15</entry><title>Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study</title><swanseaauthors><author><sid>f569591e1bfb0e405b8091f99fec45d3</sid><ORCID>0000-0002-5853-4625</ORCID><firstname>Fatemeh</firstname><surname>Torabi</surname><name>Fatemeh Torabi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-11-15</date><deptcode>MEDS</deptcode><abstract/><type>Journal Article</type><journal>Journal of the Royal Society of Medicine</journal><volume>116</volume><journalNumber>1</journalNumber><paginationStart>014107682211318</paginationStart><paginationEnd/><publisher>SAGE Publications</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0141-0768</issnPrint><issnElectronic>1758-1095</issnElectronic><keywords>Clinical; epidemiology; health informatics; infectious diseases; public health</keywords><publishedDay>14</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-11-14</publishedDate><doi>10.1177/01410768221131897</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>The British Heart Foundation Data Science Centre (grant no. SP/19/3/34678, awarded to Health Data Research (HDR) UK) funded co-development (with NHS Digital) of the TRE.</funders><projectreference/><lastEdited>2024-10-29T13:41:55.5794702</lastEdited><Created>2022-11-15T22:55:15.0066118</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Mehrdad A</firstname><surname>Mizani</surname><order>1</order></author><author><firstname>Ashkan</firstname><surname>Dashtban</surname><order>2</order></author><author><firstname>Laura</firstname><surname>Pasea</surname><order>3</order></author><author><firstname>Alvina G</firstname><surname>Lai</surname><order>4</order></author><author><firstname>Johan</firstname><surname>Thygesen</surname><order>5</order></author><author><firstname>Chris</firstname><surname>Tomlinson</surname><orcid>0000-0002-0903-5395</orcid><order>6</order></author><author><firstname>Alex</firstname><surname>Handy</surname><order>7</order></author><author><firstname>Jil B</firstname><surname>Mamza</surname><order>8</order></author><author><firstname>Tamsin</firstname><surname>Morris</surname><order>9</order></author><author><firstname>Sara</firstname><surname>Khalid</surname><order>10</order></author><author><firstname>Francesco</firstname><surname>Zaccardi</surname><order>11</order></author><author><firstname>Mary Joan</firstname><surname>Macleod</surname><order>12</order></author><author><firstname>Fatemeh</firstname><surname>Torabi</surname><orcid>0000-0002-5853-4625</orcid><order>13</order></author><author><firstname>Dexter</firstname><surname>Canoy</surname><order>14</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>15</order></author><author><firstname>Colin</firstname><surname>Berry</surname><order>16</order></author><author><firstname>Thomas</firstname><surname>Bolton</surname><order>17</order></author><author><firstname>John</firstname><surname>Nolan</surname><order>18</order></author><author><firstname>Kamlesh</firstname><surname>Khunti</surname><order>19</order></author><author><firstname>Spiros</firstname><surname>Denaxas</surname><order>20</order></author><author><firstname>Harry</firstname><surname>Hemingway</surname><order>21</order></author><author><firstname>Cathie</firstname><surname>Sudlow</surname><order>22</order></author><author><firstname>Amitava</firstname><surname>Banerjee</surname><orcid>0000-0001-8741-3411</orcid><order>23</order></author><author><firstname>(on behalf of the CVD-COVID-UK</firstname><surname>Consortium)</surname><order>24</order></author></authors><documents><document><filename>61933__25978__cbb83bdc9d7943c6afaf67eb86aabd83.pdf</filename><originalFilename>61933.pdf</originalFilename><uploaded>2022-12-01T15:56:34.3950829</uploaded><type>Output</type><contentLength>670059</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document><document><filename>61933__25979__db35a08d725244689aa9fe686174a2c3.pdf</filename><originalFilename>61933_supplementary.pdf</originalFilename><uploaded>2022-12-01T15:56:53.5665023</uploaded><type>Output</type><contentLength>1402946</contentLength><contentType>application/pdf</contentType><version>Supplemental material</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling v2 61933 2022-11-15 Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study f569591e1bfb0e405b8091f99fec45d3 0000-0002-5853-4625 Fatemeh Torabi Fatemeh Torabi true false aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 2022-11-15 MEDS Journal Article Journal of the Royal Society of Medicine 116 1 014107682211318 SAGE Publications 0141-0768 1758-1095 Clinical; epidemiology; health informatics; infectious diseases; public health 14 11 2022 2022-11-14 10.1177/01410768221131897 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University Not Required The British Heart Foundation Data Science Centre (grant no. SP/19/3/34678, awarded to Health Data Research (HDR) UK) funded co-development (with NHS Digital) of the TRE. 2024-10-29T13:41:55.5794702 2022-11-15T22:55:15.0066118 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Mehrdad A Mizani 1 Ashkan Dashtban 2 Laura Pasea 3 Alvina G Lai 4 Johan Thygesen 5 Chris Tomlinson 0000-0002-0903-5395 6 Alex Handy 7 Jil B Mamza 8 Tamsin Morris 9 Sara Khalid 10 Francesco Zaccardi 11 Mary Joan Macleod 12 Fatemeh Torabi 0000-0002-5853-4625 13 Dexter Canoy 14 Ashley Akbari 0000-0003-0814-0801 15 Colin Berry 16 Thomas Bolton 17 John Nolan 18 Kamlesh Khunti 19 Spiros Denaxas 20 Harry Hemingway 21 Cathie Sudlow 22 Amitava Banerjee 0000-0001-8741-3411 23 (on behalf of the CVD-COVID-UK Consortium) 24 61933__25978__cbb83bdc9d7943c6afaf67eb86aabd83.pdf 61933.pdf 2022-12-01T15:56:34.3950829 Output 670059 application/pdf Accepted Manuscript true true eng 61933__25979__db35a08d725244689aa9fe686174a2c3.pdf 61933_supplementary.pdf 2022-12-01T15:56:53.5665023 Output 1402946 application/pdf Supplemental material true true eng
title Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
spellingShingle Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
Fatemeh Torabi
Ashley Akbari
title_short Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
title_full Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
title_fullStr Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
title_full_unstemmed Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
title_sort Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study
author_id_str_mv f569591e1bfb0e405b8091f99fec45d3
aa1b025ec0243f708bb5eb0a93d6fb52
author_id_fullname_str_mv f569591e1bfb0e405b8091f99fec45d3_***_Fatemeh Torabi
aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari
author Fatemeh Torabi
Ashley Akbari
author2 Mehrdad A Mizani
Ashkan Dashtban
Laura Pasea
Alvina G Lai
Johan Thygesen
Chris Tomlinson
Alex Handy
Jil B Mamza
Tamsin Morris
Sara Khalid
Francesco Zaccardi
Mary Joan Macleod
Fatemeh Torabi
Dexter Canoy
Ashley Akbari
Colin Berry
Thomas Bolton
John Nolan
Kamlesh Khunti
Spiros Denaxas
Harry Hemingway
Cathie Sudlow
Amitava Banerjee
(on behalf of the CVD-COVID-UK Consortium)
format Journal article
container_title Journal of the Royal Society of Medicine
container_volume 116
container_issue 1
container_start_page 014107682211318
publishDate 2022
institution Swansea University
issn 0141-0768
1758-1095
doi_str_mv 10.1177/01410768221131897
publisher SAGE Publications
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine
document_store_str 1
active_str 0
published_date 2022-11-14T13:41:53Z
_version_ 1814255961646301184
score 11.037581