Conference Paper/Proceeding/Abstract 723 views 60 downloads
Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations
2022 Tenth International Symposium on Computing and Networking (CANDAR)
Swansea University Authors: Filippos Pantekis , Phillip James , Oliver Kullmann
-
PDF | Accepted Manuscript
Download (746.78KB)
DOI (Published version): 10.1109/candar57322.2022.00029
Abstract
In this paper we present how recent hardware revisions and newly introduced approaches to thread collaboration in NVIDIA GPUs and the CUDA toolkit can be used to design an extensible, scalable GPU-based solver for the N-Queens problem. We discuss various design choices ranging from memory structure,...
Published in: | 2022 Tenth International Symposium on Computing and Networking (CANDAR) |
---|---|
ISBN: | 978-1-6654-7531-0 978-1-6654-7530-3 |
ISSN: | 2379-1888 2379-1896 |
Published: |
IEEE
2022
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61915 |
first_indexed |
2022-11-15T01:19:55Z |
---|---|
last_indexed |
2024-11-14T12:19:59Z |
id |
cronfa61915 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-06-01T14:56:51.8027184</datestamp><bib-version>v2</bib-version><id>61915</id><entry>2022-11-15</entry><title>Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations</title><swanseaauthors><author><sid>7e3976bc926b363ee1346c423ba74d11</sid><ORCID>0000-0001-7817-6450</ORCID><firstname>Filippos</firstname><surname>Pantekis</surname><name>Filippos Pantekis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>fd3b15ff96c5ea91a100131abac558b6</sid><ORCID>0000-0002-4307-649X</ORCID><firstname>Phillip</firstname><surname>James</surname><name>Phillip James</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2b410f26f9324d6b06c2b98f67362d05</sid><ORCID>0000-0003-3021-0095</ORCID><firstname>Oliver</firstname><surname>Kullmann</surname><name>Oliver Kullmann</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-11-15</date><deptcode>MACS</deptcode><abstract>In this paper we present how recent hardware revisions and newly introduced approaches to thread collaboration in NVIDIA GPUs and the CUDA toolkit can be used to design an extensible, scalable GPU-based solver for the N-Queens problem. We discuss various design choices ranging from memory structure, to low-level optimisations on newer GPU hardware that result in strong performance when solving the N-Queens problem using an optimised solving algorithm that can be applied to other similar in nature problems.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>2022 Tenth International Symposium on Computing and Networking (CANDAR)</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>978-1-6654-7531-0</isbnPrint><isbnElectronic>978-1-6654-7530-3</isbnElectronic><issnPrint>2379-1888</issnPrint><issnElectronic>2379-1896</issnElectronic><keywords/><publishedDay>1</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2022</publishedYear><publishedDate>2022-11-01</publishedDate><doi>10.1109/candar57322.2022.00029</doi><url>http://dx.doi.org/10.1109/candar57322.2022.00029</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC, EP/S015523/1</funders><projectreference/><lastEdited>2023-06-01T14:56:51.8027184</lastEdited><Created>2022-11-15T01:10:26.2607087</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Filippos</firstname><surname>Pantekis</surname><orcid>0000-0001-7817-6450</orcid><order>1</order></author><author><firstname>Phillip</firstname><surname>James</surname><orcid>0000-0002-4307-649X</orcid><order>2</order></author><author><firstname>Oliver</firstname><surname>Kullmann</surname><orcid>0000-0003-3021-0095</orcid><order>3</order></author></authors><documents><document><filename>61915__25781__2870ab1974cc46ce84f55404cafa32b7.pdf</filename><originalFilename>CANDAR_2022_Regular_Paper_NQueens_FINAL.pdf</originalFilename><uploaded>2022-11-15T01:17:37.4275148</uploaded><type>Output</type><contentLength>764699</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-06-01T14:56:51.8027184 v2 61915 2022-11-15 Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations 7e3976bc926b363ee1346c423ba74d11 0000-0001-7817-6450 Filippos Pantekis Filippos Pantekis true false fd3b15ff96c5ea91a100131abac558b6 0000-0002-4307-649X Phillip James Phillip James true false 2b410f26f9324d6b06c2b98f67362d05 0000-0003-3021-0095 Oliver Kullmann Oliver Kullmann true false 2022-11-15 MACS In this paper we present how recent hardware revisions and newly introduced approaches to thread collaboration in NVIDIA GPUs and the CUDA toolkit can be used to design an extensible, scalable GPU-based solver for the N-Queens problem. We discuss various design choices ranging from memory structure, to low-level optimisations on newer GPU hardware that result in strong performance when solving the N-Queens problem using an optimised solving algorithm that can be applied to other similar in nature problems. Conference Paper/Proceeding/Abstract 2022 Tenth International Symposium on Computing and Networking (CANDAR) IEEE 978-1-6654-7531-0 978-1-6654-7530-3 2379-1888 2379-1896 1 11 2022 2022-11-01 10.1109/candar57322.2022.00029 http://dx.doi.org/10.1109/candar57322.2022.00029 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University EPSRC, EP/S015523/1 2023-06-01T14:56:51.8027184 2022-11-15T01:10:26.2607087 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Filippos Pantekis 0000-0001-7817-6450 1 Phillip James 0000-0002-4307-649X 2 Oliver Kullmann 0000-0003-3021-0095 3 61915__25781__2870ab1974cc46ce84f55404cafa32b7.pdf CANDAR_2022_Regular_Paper_NQueens_FINAL.pdf 2022-11-15T01:17:37.4275148 Output 764699 application/pdf Accepted Manuscript true false |
title |
Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations |
spellingShingle |
Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations Filippos Pantekis Phillip James Oliver Kullmann |
title_short |
Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations |
title_full |
Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations |
title_fullStr |
Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations |
title_full_unstemmed |
Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations |
title_sort |
Scalable N-Queens Solving on GPGPUs via Interwarp Collaborations |
author_id_str_mv |
7e3976bc926b363ee1346c423ba74d11 fd3b15ff96c5ea91a100131abac558b6 2b410f26f9324d6b06c2b98f67362d05 |
author_id_fullname_str_mv |
7e3976bc926b363ee1346c423ba74d11_***_Filippos Pantekis fd3b15ff96c5ea91a100131abac558b6_***_Phillip James 2b410f26f9324d6b06c2b98f67362d05_***_Oliver Kullmann |
author |
Filippos Pantekis Phillip James Oliver Kullmann |
author2 |
Filippos Pantekis Phillip James Oliver Kullmann |
format |
Conference Paper/Proceeding/Abstract |
container_title |
2022 Tenth International Symposium on Computing and Networking (CANDAR) |
publishDate |
2022 |
institution |
Swansea University |
isbn |
978-1-6654-7531-0 978-1-6654-7530-3 |
issn |
2379-1888 2379-1896 |
doi_str_mv |
10.1109/candar57322.2022.00029 |
publisher |
IEEE |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
http://dx.doi.org/10.1109/candar57322.2022.00029 |
document_store_str |
1 |
active_str |
0 |
description |
In this paper we present how recent hardware revisions and newly introduced approaches to thread collaboration in NVIDIA GPUs and the CUDA toolkit can be used to design an extensible, scalable GPU-based solver for the N-Queens problem. We discuss various design choices ranging from memory structure, to low-level optimisations on newer GPU hardware that result in strong performance when solving the N-Queens problem using an optimised solving algorithm that can be applied to other similar in nature problems. |
published_date |
2022-11-01T05:21:24Z |
_version_ |
1821381633673003008 |
score |
11.04748 |