
Scalable N-Queens Solving on GPGPUs via
Interwarp Collaborations

Filippos Pantekis
Department of Computer Science

Swansea University
Swansea, Wales, United Kingdom

Email: filippos.pantekis@swansea.ac.uk

Phillip James
Department of Computer Science

Swansea University
Swansea, Wales, United Kingdom
Email: p.d.james@swansea.ac.uk

Oliver Kullmann
Department of Computer Science

Swansea University
Swansea, Wales, United Kingdom
Email: o.kullmann@swansea.ac.uk

Abstract—In this paper we present how recent hardware
revisions and newly introduced approaches to thread collabo-
ration in NVIDIA GPUs and the CUDA toolkit can be used to
design an extensible, scalable GPU-based solver for the N-Queens
problem. We discuss various design choices ranging from memory
structure, to low-level optimisations on newer GPU hardware that
result in strong performance when solving the N-Queens problem
using an optimised solving algorithm that can be applied to other
similar in nature problems.

I. INTRODUCTION

The N-Queens problem [1] asks how many possible place-
ments of queens exist on an N ×N chess board such that no
queen can attack another. A queen can attack another if it is in
the same row, column or diagonal as it. This has been a long
standing open problem for which no general mathematical
solution or efficient algorithm has been identified. Finding
an efficient solution would bring benefits to applications in
areas such as job scheduling, deadlock prevention, and traffic
control [2], [3]. One of the most prevalent solving techniques
for the N-Queens problem is a trial-and-error backtracking
search which is based on a simple algorithm that leaves room
for heuristic optimisations. GPU acceleration of this type of
search however, is a challenging topic that requires a range of
techniques to be employed for successful parallelisation, due
to its ‘irregular’ nature (see Section II-A for details).

In this work, we propose a new GPU-based solver for the
N-Queens problem that relies on thread collaboration within
warps, and whose structure inherits from algorithms used in
the domain of SAT [4]. It also utilises warp balloting and
shuffling to tackle the problem and can be scaled across
any number of GPUs. We begin by introducing background
material before detailing both our algorithm and the technical
implementation choices we have made. Finally, we present
results highlighting that GPUs can improve upon current
results for solving the N-Queens problem.

II. BACKGROUND

Finding a single solution for instances of the N-Queens
problem , i.e. finding a single placement of queens on a
N x N chess board, can be achieved in a ‘fast’ manner
using both search based algorithms [5]–[7] or directly without

Supported by EPSRC grant EP/S015523/1

any search [8]. However, counting all possible solutions still
requires a brute-force search, with approaches often applying
search-space limiting heuristics. Perhaps the most prominent
solving technique [9], treats the board as a ‘ladder’ upon which
a depth-first search is performed, recursively attempting to
place a queen in a valid position on each rung, and backtrack-
ing when no more moves can be made. The complexity of
this algorithm remains exponential making it computationally
intensive for larger orders of N . As of yet, the solution counts
are known up to N = 27, the enormous computation effort for
which was undertaken by purpose-built FPGA hardware [10]
over the course of a year. This result is pending verification.

With the growing commercial availability and cost effec-
tiveness of GPUs, a number of promising attempts have been
made to harness their computational power for solving the N-
Queens problem and other problems of a similar nature [11]–
[14]. Such attempts require a large degree of optimisation
and algorithmic re-structuring to account for the specialties
of GPUs, and achieve good performance. In [11], Zhang et al.
present a range of steps that result in speedups when solving
on a GPU, and highlight the fact this type of computation is
highly ‘irregular’ considering the usual requirements for paral-
lelisation on such devices (discussed further in Section II-A).
This is further echoed in [14] by Feinbube et al. who also
highlight that programming languages and compilers are not
sufficient to achieve optimal performance on these devices.

A. NVIDIA’s Compute Unified Device Architecture (CUDA)

NVIDIA’s CUDA is a programming platform for NVIDIA’s
compute capable GPUs, often referred to as “General Pur-
pose Graphics Processing Units” (GPGPUs). CUDA provides
a framework for massively parallel computations on these
devices, where the “host” computer launches kernels of work
on the “devices” (GPUs) it controls. A kernel houses an (often
large) number of threads that will execute on the same GPU
to tackle a problem. Threads are logically divided across a
number of blocks which can be of up to three dimensions.
The blocks are then grouped into a grid arrangement which
can also have up to 3 dimensions. This grouping is of use
to tasks exhibiting spatial locality and impacts access to
different memory types. Generally, memory types can be
divided between two categories: On chip and off chip memory.

The former is size-restricted but can be accessed in few clock
cycles, yet the latter is larger in size but requires significantly
more clock cycles to be accessed. In summary, some of the
available memory types are shown in Table I.

On the hardware level, a number of Streaming Multiproces-
sors (SMs) are available. A number of blocks are scheduled
per SM to run and use its resources. For execution, each
block is partitioned into sub-groups of (currently) 32 threads,
called ‘warps’. When processing time is given to a warp,
threads within it should ideally be ready to execute the
same instruction. However, branching instructions leading to
different execution paths can introduce the potential for ‘warp
divergence’ whereby threads in the same warp are waiting to
execute different instructions. This results in a degeneration
in performance since only one instruction can be executed at
once per warp, leaving the rest of the threads waiting.

Communication between threads in a grid is possible
through Global Memory, however it should be avoided where
possible or alternatively hidden behind computation loads
to reduce memory latency costs. Similarly, synchronisation
of threads across the grid is not natively supported, but
synchronisation of threads within a block, as well as within
warps, is. A range of synchronising constructs that perform
data exchange or accumulation is also available on the warp
level, enabling ‘cheap’ communication between threads.

TABLE I
SUMMARY OF MEMORY TYPE CHARACTERISTICS IN CUDA

Type Scope Access Cost Capacity Writable
Global Memory Global High Large ✓
Constants Memory Global Low Small ✗
Shared Memory Block Low Small ✓
Local Memory Thread High Large ✓
Registers Thread Very low Very small ✓

B. The DoubleSweep Algorithm

At the basis of this paper there is a novel algorithm, called
DoubleSweep-light, for counting all N-Queens solutions,
whose main motivation and features we discuss next. This
algorithm is based upon the DoubleSweep created and
implemented in the open-source platform OKlibrary [4].1

Backtracking algorithms for counting (or enumerating) all
N-Queens solutions are a popular programming exercise. The
most efficient incarnation of such basic algorithms, known as
“Somer’s algorithm” is well know.2

The most basic feature of Somer’s algorithm is that it
represents the current board by three computer-(bit-)words:
one word for columns blocked by queens, viewing them only
as rooks, and two words for the blocked diagonals resp.
antidiagonals (for the two forms of semi-bishops, moving
diagonally resp. antidiagonally). Splitting of the problem starts

1The C++ code is available from https://github.com/OKullmann/
oklibrary/blob/master/Satisfiability/Transformers/Generators/Queens/
SimpleBacktracking/Queens RUCP ct.cpp.

2A copy of the code is available in the OKlibrary at
https://github.com/OKullmann/oklibrary/tree/master/Satisfiability/
Transformers/Generators/Queens/SomersCounting.

with the bottom row, placing a queen at each of the N available
positions. This is recursively repeated, always choosing the
next row (from the bottom) for splitting – it is crucial to note,
that the cells blocked by the current queens are obtained by
copying the column-word, and shifting resp. anti-shifting the
diagonal-words, and then performing the logical-or of these
three words as further discussed in Section IV,

The DoubleSweep algorithm combines this word-level
parallelism with basic ideas from SAT-solving (see [15] for
an overview on this class of SAT-algorithm). The two main
features are:

• Instead of just propagating the rook and bishop moves to
the next row, propagation is (nearly) done for the whole
board. That is, whether for any row or column there is
no open cell left, or whether for any row there is only
one open cell left, in which case a queen must be placed
there (and this again is propagated until fixed-point).3

This corresponds to “unit-clause propagation” for SAT-
solvers, and helps cutting off unsatisfiable branches.

• Instead of splitting on the bottom-most row, splitting is
done on the central row. This simple branching heuristic
helps to make propagation more efficient – as in chess
playing, figures placed more centrally have a greater
influence.

Now besides the three words as above, N words are used to
represent the full board with current propagations. And the two
(anti-)diagonal-words now use 64 bits, so that via a “sliding
window” one can slide the bishop-moves over the whole board
(back and forth) via the (word-level) shift-operations.

We introduce the DoubleSweep-light algorithm,
which is the lightest version of DoubleSweep: unlike
Somer’s algorithm, splitting starts at the top row, and pro-
ceeds (only) to the next row, while the data-structure of
DoubleSweep is used only for one sweep down without
iteration, until the first row is found with at least two open cells
as shown in Figure 1. This light version of DoubleSweep
is the natural starting point, given the high complexity of
implementing such dynamic algorithms on GPUs.

III. SOLVING N-QUEENS IN PARALLEL

Solving the N-Queens problem in parallel is often done via
search-space splitting by partly exploring the tree of solutions
to a certain level, and using the partial solutions as starting
points for a number of parallel workers to tackle without the
risk of converging paths [11], [12], [14].

1 fn solve(s, locked_idx):
2 let sols ← 0;
3 while advance_state(s, locked_idx) do:
4 double_sweep_light(s)
5 if state_solved(s, locked_idx) then:
6 sols ← sols + 1

Listing 1. Overview of each worker’s operation.

3A forced placement of a queen is detected only for rows, not for columns,
due to the row-centric storage of the board.

Fig. 1. Visualisation of DoubleSweep-light.

Fig. 2. A partial state of N = 6, locked at row 2.

For our approach, each worker receives a partly-explored state
and operates on it, keeping track of its own solution count. A
state is in essence a ‘snapshot’ of the recursive exploration
which holds information such as the placement of queens and
current row.

A worker’s operation can be broken down to the algorithm
shown in Listing 1. The worker receives a (partly explored)
state with the aforementioned information, as well as the index
of the lowest ‘locked’ row. This index marks a region of the
board which must not be touched by the worker. An example
of a partial state with the first two rows ‘locked’ can be seen in
Figure 2. The worker then attempts to complete the board by
making successive moves on the non-locked region, keeping
track of solutions and stopping once all possible arrangements
of queens in the non-locked region are explored. The function
advance_state (detailed in Listing 2), takes the current
state of the board as well as the index of the last locked row,
and attempts to make a single move. A move in this context
may be placing a queen in the next available row, or if that
is not possible, moving the last placed queen to the next non-

conflicting, unexplored position in the same row.
A non-conflicting position is one where no currently placed

queen can attack. If the state is such that no move can be
performed, then the queen in the last row is removed, and the
process repeats recursively as shown in Figure 3. A state is
considered completed when this function backtracks into the
locked region of the board.

1 fn advance_state(s, locked_idx):
2 let cr ← s.current_row
3 while locked_idx ≤ cr.row_index < N do:
4 let idx ← cr.current_queen_index
5 foreach i ∈]idx,N [do:
6 if ¬has_diagonal(s, i) ∧
7 ¬blocked_col(s, i) then:
8 idx ← i
9 break

10 if idx ̸= cr.current_queen_index then:
11 place_queen(s, cr, idx)
12 let x ← min(cr.row_index+ 1, N − 1)
13 s.current_row ← s.row_at[x]
14 return ⊤
15 else:
16 cr ← s.row_at[cr.row_index− 1]
17 return ⊥

Listing 2. State advancement algorithm.

Following each advancement of a state, the func-
tion double_sweep_light (detailed in Listing 3)
takes the current state of the board and performs the
DoubleSweep-light procedure described in Section II-B.
Starting from the last populated row, each row that has exactly
one non-conflicting position is iteratively discovered, and a
queen is placed in it.

1 fn double_sweep_light(s):
2 let free ← nil
3 foreach i ∈ [0, N [do:
4 if ¬has_diagonal(s, i) ∧
5 ¬blocked_col(s, i) then:
6 if free ̸= nil then:
7 return ⊥
8 free ← i
9 place_queen(s, s.current_row, free)

10 s.current_row ← s.current_row + 1

Listing 3. The DoubleSweep-light algorithm.

Lastly, once the DoubleSweep-light procedure is per-
formed, a check is made to establish if the solution count
should be incremented. This is the case when the last row of
the state has been populated i.e. N queens have been placed.

A. Generation of Initial States

To generate an initial pool of states for parallel exploration
a recursive search has to be performed up to a certain cut-
off depth. In the case of an N-Queens board, this would be a

Fig. 3. Steps involved in advancing a state.

cut-off row (or column depending on the direction of search).
The maximum possible number of states generated can be
pre-calculated, however, often a large subset of the naı̈vely
generated states are invalid or can be advanced no further.
To generate a pool of approximately w many valid states,
we employ a ladder-climbing approach presented in Listing 4.
Given an N×N board, a row r = logN (w) is chosen such that
the maximum number of naı̈ve states generated, is at least w.
The recursive search is performed up to r, keeping only the set
S of valid states generated. If |S| < w, then r is incremented
and state generation is repeated. Since the number of states
generated between two successive rows can vary wildly, we
also employ an upper limit determined as a constant factor f
over w. The resulting pool comprises of different states which
are all ‘locked’ at a row r′ and can be advanced at least once.
However, it is not possible to guarantee that states in the pool
will result in uniform search paths.

1 fn gen_state_pool(N, w):
2 let r ← logN (w)
3 let S ← ∅, S′ ←∅
4 do:
5 S′ = S
6 S ← gen_states(N, r)
7 r ← r + 1
8 while |S| ≤ (w ∗ f) ∧ r < N − 1
9 return (S′,r)

Listing 4. Ladder-climbing for initial state generation

This algorithm is implemented in parallel on the host-side,
where each thread places a queen in a different position w.r.t

the rest on the first row and then continues state generation.
Additionally, it may be the case that by incrementing r, state
generation is on a downward slope. This results in |S2| ≤ |S1|
for two sets of states S1, S2 generated by locking at rows r and
r + 1 respectively. To remedy this, a flag is introduced in the
implementation to decide if state generation must terminate in
this case or continue.

IV. IMPLEMENTATION ON THE GPU

We chose to let each thread on the GPU act as a solver
which works on its own state as described in Section III. Each
state is a struct, encoding the following information:

1) The indexes of placed queens on the current board (array
of N many unsigned 8-bit integers)

2) The index of the first row without a queen (unsigned 8-bit
integer)

3) Per-row projections of conflicting diagonals caused by
placed queens (two 64-bit bit vectors)

4) The occupied columns (32-bit bit vector)
Items 3 and 4 can be derived from the rest, and are thus

are unessential to the state, however we believe their repeated
re-computation effort outweighs their memory impact.

The search begins with a pool of states being generated
(as described in Section III-A). Then, the solver kernel is
launched which starts the search. Each thread then copies one
state from global to shared memory where it stays for the
rest of the computation. We chose one dimensional grids and
blocks since we are not making use of spatial information. The
number of threads per block is dependent on the size of each
(8-byte aligned) state in conjunction with the size of the shared
memory partition on the target device(s). Whilst transferring
of complex structs results in uncoalesced memory access by
the warps, we note this transfer is only performed once at the
beginning of the computation which results in minimal impact.

Following the transfer of data to shared memory, each
thread, in its respective warp, starts to successively advance,
and performs DoubleSweep-light on its own state as
explained in Sections IV-C and Section IV-B. Due to the
branchfull nature of the operations, this typically results in
a high degree of warp divergence. To mitigate this, warp syn-
chronization barriers are interleaved between the operations.
Such barriers force threads in a warp to wait until the rest reach
the same barrier. During each step of the combined search
effort of each warp, the threads in the warp are balloted on
whether or not the warp should exit. A thread votes ‘yes’
if it has reached the end of its search path. The warp will
continue this process until all threads vote ‘yes’. Balloting is
implemented efficiently using warp-level primitives.

A. Tracking Diagonals

As described in Section II-B, two bit vectors are used to
form the projection of diagonal attacks on each row. More
specifically, the 64-bit bit vector v is updated upon placement
of a queen at some row-column pair (r, c) by first creating a bit
mask m = 1 << ((N−1−c)+r) and subsequently computing
the new value of the vector v′ = v|m. This operation is

reversed when a queen is removed from the board (i.e. during
backtracking) in a similar fashion, where the new vector value
is computed as v′ = v&¬m.

Given the vector v, the projection of diagonals affecting row
r′ is derived as: dr′ = (v >> r′) & ((1 << N) − 1), which
results in an N -bit vector where 1’s represent a ‘blocked’
column. In most cases, the expression can be simplified to
dr′ = v >> r′ provided that only the first N bits are
considered in the computation.

The above process is sufficient to track diagonals in one
direction. Anti-diagonals are tracked in the same way, except
the vector is treated from higher order bits to lower.

B. Performing DoubleSweep-light

The DoubleSweep-light procedure described in Sec-
tion II-B is triggered after each advancement of the state.
To derive queen placements, it must be the case that on
some row r, there is exactly one non-conflicting position at
column c. To find c, a bit mask m is created by combining
the diagonal projections dr for this row, with the occupied
columns mask o as: m = ¬(dr|o). In the resulting mask,
set bits mark the free, non-conflicting positions in row r.
From this mask, the set bit population count is taken. If the
count is exactly one, the column c is identified by finding
the position of the only set bit, and a queen is placed.
This operation results in a degree of thread divergence since
DoubleSweep-light may perform a varying number of
steps depending on the state of each thread in a warp. This is
unavoidable, however a synchronisation barrier following the
DoubleSweep-light operation is inserted re-converging
threads ready for the next operation.

C. Advancing States

Advancing a state, as described in Section III, aims to make
a valid change to the state without overlapping with previously
explored states. The process of identifying the next valid
placement on a given row r is performed by first computing
the mask m as described in Section IV-B. If no queen has
been placed in r, then the position of the first set bit of m
is used. If a queen is placed in column q of r a new mask
m′ = m&(P << (q + 1)) is computed where P is a mask
with only the lower N bits set. This effectively isolates all
positions up to and including the current queen’s position
from being chosen again. Like before, the position of the first
set bit is where the new queen is placed. If no bit is set in
m′, backtracking is performed by choosing the previous row
and repeating the above process. This is done using iteration
as opposed to recursion for which support is limited on the
device. Again we use synchronisation barriers as the number
of steps this takes varies depending on the current state.

D. Summarising Results

Once each warp reaches the end of solution counting, each
of its threads has the number of solutions it found stored in
a register. A parallel summation operation is then performed
within the warp via register ‘shuffling’. During this operation,

Fig. 4. Visualisation of steps involved in warp down-shuffling.

the warp is partitioned into two halves Hl and Hr, and
each thread in Hl adds to its solution count to that of the
corresponding thread in Hr. Then, Hl is once again partitioned
into two halves, and the process repeats until the first thread of
the warp holds the collective sum of solutions as illustrated in
Figure 4. The exchange of information is performed between
the registers of the threads without the need of repeated
loading and storing to shared memory.

The first thread writes the sum to a distinct location in
shared memory. Once all warps complete this operation, one
of the warps is chosen to perform the final summation of the
shared memory elements as described above, resulting in a
single value per block. A thread from each block writes this
sum to a distinct location in shared memory, and the final
summation of results is performed by the host.

The choice to let the host perform the final summation of
block results was made on the basis that results for larger N
are likely not representable by a 64 bit integer (currently the
maximum natively supported integer type by NVIDIA GPUs).

E. Performance Optimizations and Observations

In Section IV-D the summation of results through a ‘warp
shuffling’ operation is presented. Warp shuffling instructions
have been supported by NVIDIA’s Parallel Thread Execution
(PTX) virtual machine, as well as the low level GPU assembly
language used by NVIDIA known as ‘SASS’, since the Kepler
micro-architecture [16].

In Section IV-D the process described is achieved through
five shfl.sync.down.b32 PTX instructions, each paired
with addition. In the recent Ampere micro-architecture [17]
support was introduced for a warp-wide addition reduction
as a single instruction, namely redux.sync.add.u32. We
found the latter to perform much better in our benchmarks
compared to the former, on a system with an Ampere device
as described in Section V-A.

In Section IV-B, the intrinsics __popc and __ffs are
used which are defined in CUDA to find the set bit count
and the first set bit of a mask respectively. Currently, the
former is backed by the instruction popc in PTX (Since the
Fermi architecture), however the latter results in two separate
operations being performed: the reversal of the bits using

TABLE II
SOLVING TIMES IN MILLISECONDS FOR N ACROSS BENCHMARK CONFIGURATIONS.

N 1x1080ti (ms) 2x1080ti (ms) 1x3090 (ms)
14 1.95 ±0.296 0.95 ±0.122 0.93 ±0.024
15 11.49 ±1.038 6.53 ±0.602 5.44 ±0.369
16 138.36 ±0.678 71.17 ±5.255 64.3 ±1.59
17 961 ±21.1 477.2 ±39.2 421 ±2.7
18 6887.8 ±11.5 3439.2 ±6.6 2998.6 ±12.2
19 50445.9 ±190 25354.7 ±196.1 21394.1 ±324.8
20 437200.7 ±1614 213023.4 ±3163.9 176120.9 ±2198.2

brev.b32 followed by the identification of the first higher
order set bit using bfind.shiftamt.u32. Bit reversal is
unnecessary during the DoubleSweep-light procedure, as
it is known that exactly one bit is set. This is not an assumption
the compiler can safely make, thus it is manually implemented.

Further to the above, we chose to make use of the PTX
instructions bfi (Bit Field Insert), bfe (Bit Field Extract) and
bmsk (Bit field Mask) on code targeted to devices that support
them, following the observation that some opportunity for their
use was not taken by the compiler. Since interfering with the
compiler via inline assembly may hinder optimisations, we
regard those as “experimental” optimizations that may result
in lower performance in future generations of hardware.

Lastly, significant performance gains were observed
when in code, non-aliasing pointers were annotated with
__restrict__, a CUDA keyword akin to the type qualifier
restrict in the C language. The extra information offered
on pointers, enables a set of optimisations that would otherwise
be deemed “unsafe” by the compiler.

F. Using Multiple GPUs

Each warp in our solver works in isolation, and has no
dependency or communication requirements with other warps.
As such, our approach lends itself to parallelisation across
multiple GPUs in the same machine or distributed (e.g. Be-
owulf clusters [18]).

When preparing the solver for such systems, care must be
taken in the compilation of the solver. When multiple GPUs
of different compute capabilities are used for a computation,
code must be compiled targeting the device with the lowest
compute capability. This may result in fewer optimizations
for the newer devices. Alternatively separate instances of the
solver may be compiled specifically for the targeted compute
capability. However, this will require additional manual work
for scheduling.

V. PERFORMANCE EVALUATION

To test the performance of our solver, we took 10 kernel
execution time measurements for each N ∈ {14, . . . , 20}.
Three sets of benchmarks were taken on devices across two
systems with the following main characteristics:

System 1: CPU - AMD Ryzen 9 3950X, GPU - NVIDIA RTX
3090 @ 1745MHz.

14 15 16 17 18 19 20
1
3
13

15
01,

00
05,

00
050

,0
0045

0,
00
0

Ti
m

e
(m

s)

1×1080ti
2×1080ti
1×3090

Fig. 5. Visualisation of time trend.

System 2: CPU - AMD Ryzen Threadripper 2950X, GPU -
2× NVIDIA GTX 1080ti @ 1683MHz (SLI).

On both systems, a cool-down period was enforced between
benchmarks to prevent impacts from thermal throttling. On
System 2, two sets of benchmarks were taken, one on a single
GPU and one using both GPUs (see Section IV-F). The average
solving time for each N tested, along with the standard
deviation (error) are presented in Table II and Figure 5.

Solving on two GTX 1080ti GPUs yields a 2x speedup
compared to solving on a single GTX 1080ti, affirming our
aim to design a scalable solver with loose coupling between
devices involved. Interestingly, the results indicate that two
1080ti GPUs perform almost as well in this task as the RTX
3090. The RTX 3090 features the Ampere architecture and
is significantly more capable than the 1080ti which features
the Pascal architecture, thus it may be expected that the 3090
would outperform the 1080ti by a larger margin, however we
believe that such comparison of devices may only be done in
the context of the application at hand.

Overall the performance of our solver matches or surpasses
that of previous work in the field [11], [13], [14], whilst being
openly scalable. Its extensible design allows for problems of
size N up to 64 to be explored with minor changes. Further
heuristics can also be easily introduced. We note that currently
our solver does not include heuristics to prevent transforma-
tions of already found solutions from being discovered which
remains future work. As experienced by others [11], [14] we
envisage such techniques may improve performance further.

We also note that comparisons with other work would ideally
be performed on comparable hardware and must consider
several factors including aspects such as GPU driver versions,
library and compilers versions, which is generally unavailable.

A. Benchmark Remarks

For each value of N , a number of states were generated
following the process described in Section III-A. As the
number generated cannot be tightly controlled, the number
of blocks in each kernel profiled (shown in Table III) varies.
Larger kernels were preferred to compensate for the fact some
of the blocks have longer run times than others, and to provide
more stable results. There is some cost associated with blocks
retiring or becoming resident on an SM during computation,
however details on such costs are unpublished, and is likely
compensated for by the weight of the computation performed.

TABLE III
NUMBER OF BLOCKS AND THEIR RESPECTIVE SIZE IN KERNELS, FOR

EACH VALUE OF N BENCHMARKED.

N Block Count Block Size
14 4462 1024
15 27199 1024
16 45266 992
17 35540 992
18 76526 992
19 26727 992
20 45931 992

The size of blocks in our benchmarks is different for some
N . This is a limit imposed by the shared memory per block
requirements of our solver which varies for different values of
N as described in Section IV. The size of a block can be of
significance to performance, however a range of other factors
must be considered such as register usage, shared memory
requirements and L2 cache split, etc. For benchmarking,
we fixed the shared memory size to the largest supported
across all devices, irrespective of shared memory partitioning
capabilities. We note however that deciding block size based
on a device’s capabilities may result in better performance.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have presented both a new algorithm –
DoubleSweep-light – for solving the N-Queens problem
and given a detailed discussion of how such an algorithm
can be implemented for high performance on GPUs. Our
approach relies on considerable thread collaboration within
warps and utilises warp balloting. Our results demonstrate
that this approach outperforms existing approaches and is also
openly scalable in terms of parallelisation across devices.

Looking to the future, we plan to extend the solver by
introducing more search space reducing heuristics such as
the elimination of symmetries. With the current algorithm,
different workers will, during their exploration, arrive at 90°,
180° and 270° rotations as well as the horizontal and vertical
mirroring of a “fundamental” solution. This will be part of our
implementation of the full DoubleSweep algorithm.

Additionally, we observed that during search, some threads
have shorter search paths and hence come to an end sooner
than others. As a result warps have fewer active threads, and do
not perform at full potential. For longer running computations,
we would like to devise a restart heuristic for the search so that
active search paths can be re-distributed periodically to fewer,
full warps. Our early explorations indicate that ‘smart’ warp-
activity based heuristics involve a degree of communication
between each device and the host that coordinates it. This
incurs a large cost, however we believe this can be remedied
with reduced host polling or a different restart strategy.

Finally, we intend to evaluate the performance of our solver
for larger N against a cluster of 48 NVIDIA A100 GPUs
on a newly acquired ATOS BullSequana X410 supercomputer
deployment. With the rise in GPU availability in large scale
computers, we hope that the solution count to N = 27 can be
verified and that of N = 28 can be found using these devices.

REFERENCES

[1] P. J. Campbell, “Gauss and the eight queens problem: A study in
miniature of the propagation of historical error,” Historia Mathematica,
vol. 4, no. 4, pp. 397–404, 1977.

[2] M. M. Waqas and A. A. Bhatti, “Optimization of N+1 Queens problem
using discrete neural network,” Neural Network World, vol. 27, 2017.

[3] C. Erbas, S. Sarkeshik, and M. M. Tanik, “Different perspectives of the
N-Queens problem,” in Proceedings of the ACM Annual Conference on
Communications. ACM, 1992, p. 99–108.

[4] O. Kullmann, “The OKlibrary: Introducing a ”holistic” research platform
for (generalised) SAT solving,” Studies in Logic, vol. 2, no. 1, pp. 20–53,
2009.

[5] R. Sosic and J. Gu, “A polynomial time algorithm for the N-Queens
problem,” SIGART Bulletin, vol. 1, no. 3, pp. 7–11, 1990.

[6] I. Martinjak and M. Golub, “Comparison of heuristic algorithms for the
N-Queen problem,” in 29th International Conference on Information
Technology Interfaces, 2007, pp. 759–764.

[7] J. Cao, Z. Chen, Y. Wang, and H. Guo, “Parallel implementations
of candidate solution evaluation algorithm for N-Queens problem,”
Complexity, pp. 1–15, Feb. 2021.

[8] A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems
with Elementary Solutions. Dover Publications, 1987.

[9] B. Abramson and M. Yung, “Divide and conquer under global con-
straints: A solution to the N-queens problem,” Journal of parallel and
distributed computing., vol. 6, no. 3, 1989.

[10] T. B. Preußer and M. R. Engelhardt, “Putting Queens in Carry Chains,
№27,” J. Signal Process. Syst., vol. 88, no. 2, pp. 185–201, 2017.

[11] T. Zhang, W. Shu, and M.-Y. Wu, “Optimization of N-Queens solvers
on graphics processors,” in Advanced Parallel Processing Technologies.
Springer, 2011, pp. 142–156.

[12] S. Tzeng, B. Lloyd, and J. D. Owens, “A GPU task-parallel model with
dependency resolution,” Computer, vol. 45, no. 8, pp. 34–41, 2012.

[13] R. Muniyandi and A. Maroosi, “Enhancing the simulation of membrane
system on the GPU for the N-Queens problem,” Chinese Journal of
Electronics, vol. 24, pp. 740–743, 2015.

[14] F. Feinbube, B. Rabe, M. Löwis, and A. Polze, “NQueens on CUDA:
Optimization issues,” 2010, pp. 63–70.

[15] M. J. H. Heule and H. van Maaren, “Look-ahead based SAT solvers,”
in Handbook of Satisfiability, ser. Frontiers in Artificial Intelligence and
Applications, A. Biere, M. J. Heule, H. van Maaren, and T. Walsh, Eds.
IOS Press, February 2009, vol. 185, ch. 5, pp. 155–184.

[16] NVIDIA, “NVIDIA GeForce GTX 680,” https://www.nvidia.com/
content/PDF/product-specifications/GeForce GTX 680 Whitepaper
FINAL.pdf, White Paper, 2012.

[17] ——, “NVIDIA Ampere GA102 GPU Architecture,”
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-
architecture-whitepaper-v2.pdf, White Paper, 2020.

[18] D. Ridge, D. Becker, P. Merkey, and T. Sterling, “Beowulf: harnessing
the power of parallelism in a pile-of-PCs,” in IEEE Aerospace Confer-
ence, vol. 2, 1997, pp. 79–91.

