Journal article 486 views 23 downloads
Averaging Principle for Stochastic Tidal Dynamics Equations
Xiuwei Yin,
Guangjun Shen null,
Jiang-lun Wu
Communications in Mathematical Analysis and Applications, Volume: 2, Issue: 1, Pages: 1 - 20
Swansea University Author: Jiang-lun Wu
-
PDF | Accepted Manuscript
Download (249.36KB)
DOI (Published version): 10.4208/cmaa.2022-0019
Abstract
In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii's time discretization ap...
Published in: | Communications in Mathematical Analysis and Applications |
---|---|
ISSN: | 2790-1920 2790-1939 |
Published: |
Hong Kong
Global Science Press
2023
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa61374 |
first_indexed |
2022-10-11T09:20:01Z |
---|---|
last_indexed |
2024-11-14T12:19:01Z |
id |
cronfa61374 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2024-07-17T13:23:46.8907030</datestamp><bib-version>v2</bib-version><id>61374</id><entry>2022-09-28</entry><title>Averaging Principle for Stochastic Tidal Dynamics Equations</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-28</date><abstract>In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii's time discretization approach, we derive a strong averaging principle showing that the solution of stochastic tidal dynamics equations can be approximated by solutions of the system of averaged stochastic equations in the sense of convergence in mean square.</abstract><type>Journal Article</type><journal>Communications in Mathematical Analysis and Applications</journal><volume>2</volume><journalNumber>1</journalNumber><paginationStart>1</paginationStart><paginationEnd>20</paginationEnd><publisher>Global Science Press</publisher><placeOfPublication>Hong Kong</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint>2790-1920</issnPrint><issnElectronic>2790-1939</issnElectronic><keywords>stochastic tidal dynamics equations; Averaging principle; Strong convergence</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-03-01</publishedDate><doi>10.4208/cmaa.2022-0019</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>the Natural Science Foundation of China and he Natural Science Foundation of Anhui Province: 11901005, 12071003; 2008085QA20.</funders><projectreference/><lastEdited>2024-07-17T13:23:46.8907030</lastEdited><Created>2022-09-28T12:52:35.5083346</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Xiuwei</firstname><surname>Yin</surname><order>1</order></author><author><firstname>Guangjun Shen</firstname><surname>null</surname><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>3</order></author></authors><documents><document><filename>61374__25248__e1ec316f3387441db62872c17995f8b0.pdf</filename><originalFilename>YinShenWu-acceptedV.pdf</originalFilename><uploaded>2022-09-28T12:57:49.8772562</uploaded><type>Output</type><contentLength>255348</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-10-11T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2024-07-17T13:23:46.8907030 v2 61374 2022-09-28 Averaging Principle for Stochastic Tidal Dynamics Equations dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2022-09-28 In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii's time discretization approach, we derive a strong averaging principle showing that the solution of stochastic tidal dynamics equations can be approximated by solutions of the system of averaged stochastic equations in the sense of convergence in mean square. Journal Article Communications in Mathematical Analysis and Applications 2 1 1 20 Global Science Press Hong Kong 2790-1920 2790-1939 stochastic tidal dynamics equations; Averaging principle; Strong convergence 1 3 2023 2023-03-01 10.4208/cmaa.2022-0019 COLLEGE NANME COLLEGE CODE Swansea University the Natural Science Foundation of China and he Natural Science Foundation of Anhui Province: 11901005, 12071003; 2008085QA20. 2024-07-17T13:23:46.8907030 2022-09-28T12:52:35.5083346 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Xiuwei Yin 1 Guangjun Shen null 2 Jiang-lun Wu 3 61374__25248__e1ec316f3387441db62872c17995f8b0.pdf YinShenWu-acceptedV.pdf 2022-09-28T12:57:49.8772562 Output 255348 application/pdf Accepted Manuscript true 2023-10-11T00:00:00.0000000 true eng |
title |
Averaging Principle for Stochastic Tidal Dynamics Equations |
spellingShingle |
Averaging Principle for Stochastic Tidal Dynamics Equations Jiang-lun Wu |
title_short |
Averaging Principle for Stochastic Tidal Dynamics Equations |
title_full |
Averaging Principle for Stochastic Tidal Dynamics Equations |
title_fullStr |
Averaging Principle for Stochastic Tidal Dynamics Equations |
title_full_unstemmed |
Averaging Principle for Stochastic Tidal Dynamics Equations |
title_sort |
Averaging Principle for Stochastic Tidal Dynamics Equations |
author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Jiang-lun Wu |
author2 |
Xiuwei Yin Guangjun Shen null Jiang-lun Wu |
format |
Journal article |
container_title |
Communications in Mathematical Analysis and Applications |
container_volume |
2 |
container_issue |
1 |
container_start_page |
1 |
publishDate |
2023 |
institution |
Swansea University |
issn |
2790-1920 2790-1939 |
doi_str_mv |
10.4208/cmaa.2022-0019 |
publisher |
Global Science Press |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii's time discretization approach, we derive a strong averaging principle showing that the solution of stochastic tidal dynamics equations can be approximated by solutions of the system of averaged stochastic equations in the sense of convergence in mean square. |
published_date |
2023-03-01T05:19:43Z |
_version_ |
1821381528394924032 |
score |
11.3749895 |