No Cover Image

Journal article 486 views 23 downloads

Averaging Principle for Stochastic Tidal Dynamics Equations

Xiuwei Yin, Guangjun Shen null, Jiang-lun Wu

Communications in Mathematical Analysis and Applications, Volume: 2, Issue: 1, Pages: 1 - 20

Swansea University Author: Jiang-lun Wu

Check full text

DOI (Published version): 10.4208/cmaa.2022-0019

Abstract

In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii's time discretization ap...

Full description

Published in: Communications in Mathematical Analysis and Applications
ISSN: 2790-1920 2790-1939
Published: Hong Kong Global Science Press 2023
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa61374
first_indexed 2022-10-11T09:20:01Z
last_indexed 2024-11-14T12:19:01Z
id cronfa61374
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2024-07-17T13:23:46.8907030</datestamp><bib-version>v2</bib-version><id>61374</id><entry>2022-09-28</entry><title>Averaging Principle for Stochastic Tidal Dynamics Equations</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2022-09-28</date><abstract>In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii's time discretization approach, we derive a strong averaging principle showing that the solution of stochastic tidal dynamics equations can be approximated by solutions of the system of averaged stochastic equations in the sense of convergence in mean square.</abstract><type>Journal Article</type><journal>Communications in Mathematical Analysis and Applications</journal><volume>2</volume><journalNumber>1</journalNumber><paginationStart>1</paginationStart><paginationEnd>20</paginationEnd><publisher>Global Science Press</publisher><placeOfPublication>Hong Kong</placeOfPublication><isbnPrint/><isbnElectronic/><issnPrint>2790-1920</issnPrint><issnElectronic>2790-1939</issnElectronic><keywords>stochastic tidal dynamics equations; Averaging principle; Strong convergence</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2023</publishedYear><publishedDate>2023-03-01</publishedDate><doi>10.4208/cmaa.2022-0019</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders>the Natural Science Foundation of China and he Natural Science Foundation of Anhui Province: 11901005, 12071003; 2008085QA20.</funders><projectreference/><lastEdited>2024-07-17T13:23:46.8907030</lastEdited><Created>2022-09-28T12:52:35.5083346</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Xiuwei</firstname><surname>Yin</surname><order>1</order></author><author><firstname>Guangjun Shen</firstname><surname>null</surname><order>2</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>3</order></author></authors><documents><document><filename>61374__25248__e1ec316f3387441db62872c17995f8b0.pdf</filename><originalFilename>YinShenWu-acceptedV.pdf</originalFilename><uploaded>2022-09-28T12:57:49.8772562</uploaded><type>Output</type><contentLength>255348</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2023-10-11T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2024-07-17T13:23:46.8907030 v2 61374 2022-09-28 Averaging Principle for Stochastic Tidal Dynamics Equations dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2022-09-28 In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii's time discretization approach, we derive a strong averaging principle showing that the solution of stochastic tidal dynamics equations can be approximated by solutions of the system of averaged stochastic equations in the sense of convergence in mean square. Journal Article Communications in Mathematical Analysis and Applications 2 1 1 20 Global Science Press Hong Kong 2790-1920 2790-1939 stochastic tidal dynamics equations; Averaging principle; Strong convergence 1 3 2023 2023-03-01 10.4208/cmaa.2022-0019 COLLEGE NANME COLLEGE CODE Swansea University the Natural Science Foundation of China and he Natural Science Foundation of Anhui Province: 11901005, 12071003; 2008085QA20. 2024-07-17T13:23:46.8907030 2022-09-28T12:52:35.5083346 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Xiuwei Yin 1 Guangjun Shen null 2 Jiang-lun Wu 3 61374__25248__e1ec316f3387441db62872c17995f8b0.pdf YinShenWu-acceptedV.pdf 2022-09-28T12:57:49.8772562 Output 255348 application/pdf Accepted Manuscript true 2023-10-11T00:00:00.0000000 true eng
title Averaging Principle for Stochastic Tidal Dynamics Equations
spellingShingle Averaging Principle for Stochastic Tidal Dynamics Equations
Jiang-lun Wu
title_short Averaging Principle for Stochastic Tidal Dynamics Equations
title_full Averaging Principle for Stochastic Tidal Dynamics Equations
title_fullStr Averaging Principle for Stochastic Tidal Dynamics Equations
title_full_unstemmed Averaging Principle for Stochastic Tidal Dynamics Equations
title_sort Averaging Principle for Stochastic Tidal Dynamics Equations
author_id_str_mv dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Jiang-lun Wu
author2 Xiuwei Yin
Guangjun Shen null
Jiang-lun Wu
format Journal article
container_title Communications in Mathematical Analysis and Applications
container_volume 2
container_issue 1
container_start_page 1
publishDate 2023
institution Swansea University
issn 2790-1920
2790-1939
doi_str_mv 10.4208/cmaa.2022-0019
publisher Global Science Press
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description In this paper, we aim to establish a strong averaging principle for stochastic tidal dynamics equations. The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under suitable assumptions, utilizing Khasminkii's time discretization approach, we derive a strong averaging principle showing that the solution of stochastic tidal dynamics equations can be approximated by solutions of the system of averaged stochastic equations in the sense of convergence in mean square.
published_date 2023-03-01T05:19:43Z
_version_ 1821381528394924032
score 11.3749895